The Open UniversitySkip to content
 

The JCMT Gould Belt Survey: evidence for radiative heating in Serpens MWC 297 and its influence on local star formation

Rumble, D.; Hatchell, J.; Gutermuth, R. A.; Kirk, H.; Buckle, J.; Beaulieu, S. F.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Jenness, T.; Johnstone, D.; Mottram, J. C.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Walker-Smith, S.; Francesco, J. D.; Hogerheijde, M. R.; Ward-Thompson, D.; Allen, L. E.; Cieza, L. A.; Dunham, M. M.; Harvey, P. M.; Stapelfeldt, K. R.; Bastien, P.; Butner, H.; Chen, M.; Chrysostomou, A.; Coude, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wilson, C. D.; Wouterloot, J.; Yates, J. and Zhu, M. (2015). The JCMT Gould Belt Survey: evidence for radiative heating in Serpens MWC 297 and its influence on local star formation. Monthly Notices of the Royal Astronomical Society, 448(2) pp. 1551–1573.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (4MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1093/mnras/stu2695
Google Scholar: Look up in Google Scholar

Abstract

We present SCUBA-2 450 and 850 μm observations of the Serpens MWC 297 region, part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey of nearby star-forming regions. Simulations suggest that radiative feedback influences the star formation process and we investigate observational evidence for this by constructing temperature maps. Maps are derived from the ratio of SCUBA-2 fluxes and a two-component model of the JCMT beam for a fixed dust opacity spectral index of β = 1.8. Within 40 arcsec of the B1.5Ve Herbig star MWC 297, the submillimetre fluxes are contaminated by free-free emission with a spectral index of 1.03 ± 0.02, consistent with an ultracompact H II region and polar winds/jets. Contamination accounts for 73 ± 5 per cent and 82 ± 4 per cent of peak flux at 450 μm and 850 μm, respectively. The residual thermal disc of the star is almost undetectable at these wavelengths. Young stellar objects (YSOs) are confirmed where SCUBA-2 850 μm clumps identified by the FELLWALKER algorithm coincide with Spitzer Gould Belt Survey detections. We identify 23 objects and use Tbol to classify nine YSOs with masses 0.09 to 5.1 M. We find two Class 0, one Class 0/I, three Class I and three Class II sources. The mean temperature is 15 ± 2 K for the nine YSOs and 32 ± 4 K for the 14 starless clumps. We observe a starless clump with an abnormally high mean temperature of 46 ± 2 K and conclude that it is radiatively heated by the star MWC 297. Jeans stability provides evidence that radiative heating by the star MWC 297 may be suppressing clump collapse.

Item Type: Journal Item
Copyright Holders: 2015 The Authors
ISSN: 1365-2966
Keywords: radiative transfer; stellar formation; protostars; H II regions
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 42409
Depositing User: G. J. White
Date Deposited: 25 Mar 2015 15:12
Last Modified: 08 Dec 2018 04:32
URI: http://oro.open.ac.uk/id/eprint/42409
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU