Hydrological niches in terrestrial plant communities: a review

How to cite:

© 2014 The Authors
Version: Accepted Manuscript
Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1111/1365-2745.12332

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Hydrological niches in terrestrial plant communities: A review

Jonathan Silvertown1,3, Yoseph Araya2 and David Gowing1

1. Department of Environment, Earth and Ecosystems, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

2. Department of Geography, Environment & Development Studies, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK

3. Current address: Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK

Correspondence author: E-mail: Jonathan.Silvertown@ed.ac.uk Running headline:
ESSAY REVIEW

Summary

1. Despite the fundamental significance of water to plants and the persisting question of how competing species coexist, this is the first review of hydrological niches. We define hydrological niche segregation (HNS) as: (i) partitioning of space on fine-scale soil-moisture gradients, (ii) partitioning of water as a resource, and/or (iii) partitioning of recruitment opportunities among years caused by species specializing on particular patterns of temporal variance of water supply (the storage effect).

2. We propose that there are three types of constraint that lead to the trade-offs that underlie HNS. (i) An edaphic constraint creates a trade-off between the supply to roots of O₂ on the one hand vs. water and nutrients on the other. (ii) A biophysical constraint governs gas exchange by leaves, leading to a trade-off between CO₂ acquisition vs. water loss. (iii) A structural constraint arising from the physics of water-conducting tissues leads to a safety vs. efficiency trade-off.

3. Significant HNS was found in 43/48 field studies across vegetation types ranging from arid to wet, though its role in coexistence remains to be proven in most cases. Temporal partitioning promotes coexistence through the storage effect in arid plant communities, but has yet to be shown elsewhere. In only a few cases is it possible to unequivocally link HNS to a particular trade-off.

5. Synthesis. The field and experimental evidence make it clear that HNS is widespread, though it is less clear what its precise mechanisms or consequences are. HNS mechanisms should be revealed by further study of the constraints and trade-offs that govern how plants obtain and use water and HNS can be mechanistically linked.
ESSAY REVIEW

23 to its consequences with appropriate community models. In a changing climate, such
24 an integrated programme would pay dividends for global change research.

25 **Key-words**: coexistence, eco-hydrology, global change, hydrological niche, plant
26 community ecology, plant population and community dynamics, stable isotopes
Introduction

Terrestrial plants use water for just about every function imaginable. It is used structurally to provide cell turgor, as a raw material, a solvent, a transport medium and a coolant. Transpiration of water is the source of motive power in the xylem and the photolysis of water provides hydrogen atoms for the biosynthetic reactions of photosynthesis. Plants also require a flux of water in order to take up nutrients. Water is so obviously essential to physiological functions that it is arguable that ecologists have overlooked the more subtle importance of water to plant community structure, except in habitats where it is clearly in short supply. Part of the reason for this oversight must be that water, like light, O\textsubscript{2}, CO\textsubscript{2} and the major nutrients N, P and K, is an essential resource for all plants and there just don't seem to be enough ways for species to partition these into the hundreds of niches required for stable coexistence in the most species-rich plant communities (Silvertown 2004).

The problem of coexistence in plant communities and its potential solutions have been recently reviewed by Wilson (2011). The idea embodied in neutral theory that niches are unnecessary or irrelevant to plant coexistence (Hubbell 2001), looks increasingly untenable in the light of recent studies (Levine & HilleRisLambers 2009; Adler et al. 2010; Clark 2010; Purves & Turnbull 2010). It is therefore timely to ask how important hydrological niches might be to plant community structure, particularly since hydrology is expected to be altered by climate change and therefore this information is of practical, predictive value (Bartholomeus et al. 2011; Strom et al. 2012).
ESSAY REVIEW

Fan et al. (2013) estimate that the water table lies near to the surface in nearly a third of the Earth's land area, indicating the global importance of groundwater hydrology to plant communities, but hydrological niches are not confined to such areas. The evidence is growing that across the full range of water availability from arid habitats to wetlands (Webb et al. 2012), even closely related species differ in their tolerance of water deficit or excess and how these conditions vary over time (Parolin et al. 2010; West et al. 2012; Craine et al. 2013). These differences among species frequently manifest themselves in the segregated distribution of species along gradients.

For the purposes of this review, terrestrial plant communities include 'wetlands' that may be temporarily flooded, but not those that are fully aquatic. The physical scale of the soil-moisture gradient affecting plant community composition may range from the geographical to the highly local. Moeslund et al. (2013b) surveyed vegetation composition and variation at spatial resolutions from 2 m–250 m across 43,000 km² in Denmark. They found that topographically-related soil wetness was the primary determinant of habitat type. The same variable determined variation among grassland habitat types (Moeslund et al. 2013a). Also working at a geographic scale, Schietti et al. (2014) found that 82% of the variance in plant composition among plots in Amazon terra firme forest could be accounted for by the depth to water table.

In temperate forest in France, soil-water balance was a better predictor of tree species distribution than Potential Evapotranspiration (PET) derived from climatic variables (Piedallu et al. 2013). This result underlines the point that plants react to local soil moisture availability and that this must ultimately be responsible for their segregation on gradients at large, as well as fine, physical scales. For this reason, the soil-moisture responses of species can be expected to show correlations across spatial scales. Such a
correlation between drought tolerance and distribution at geographic and more local scales is commonly found among tropical tree species (Comita & Engelbrecht 2013).

In this review, we focus mainly on the fine spatial scale relevant to α-diversity and the α-niche because it is fundamental both to coexistence (Silvertown 2004) and to processes determining distribution at larger scales. Following Araya et al. (2011), we define hydrological niche segregation (HNS) as "(i) partitioning of space on fine-scale soil-moisture gradients (fine-scale being defined as a distance sufficiently small for species to compete for the same resources), or (ii) partitioning of water as a resource through different strategies of water acquisition such as different phenologies or different rooting depths." To this pair of definitions we now add a third that logically belongs with them, which is (iii) partitioning of recruitment opportunities among years caused by species specializing on particular patterns of temporal variance of water supply. This can promote coexistence through the temporal storage effect (Chesson et al. 2004).

In this review, we firstly consider the theoretical requirements for hydrological niche segregation, then we survey the field evidence for the existence of HNS within communities and finally we discuss these field-survey results in the light of experimental and other evidence.

Hydrological niche segregation

Coexistence mechanisms

Chesson (2000) distinguished between coexistence mechanisms that equalize interspecific competitive abilities, for example as in the neutral model (Hubbell 2001), and those that stabilize communities through frequency dependence. The
essential condition for a mechanism to be stabilizing is that it should cause any
species to increase when rare. A community of two competing species can satisfy this
condition if each is limited more by intraspecific competition than by interspecific
competition. Niche segregation has this effect because as population density
increases, the impact of intraspecific competition rises and the impact of interspecific
competition falls, thus relieving rare species from competitive pressure by other
species.

The temporal instability of soil moisture, which can be very variable from year to year
(Terradas et al. 2009), is a feature of hydrological niches not shared by other resource
gradients such as light or nutrients that tend to change gradually. Seedlings are
typically more vulnerable to drought than are mature plants with deeper roots and
hence plants may have different strategies of survival in the regeneration and the later
phases of the life cycle (Grubb 1977). This decoupling between the conditions
required for recruitment, for example through the release of seeds from dormancy,
and for adult survival is a pre-condition for the temporal storage effect. Established
plants (or seeds) that are resistant to drought are "stored" over periods that are too dry
for seedling recruitment.

The temporal storage effect in which species depend for recruitment on different
patterns of temporal variance in water availability, needs to be distinguished from
other hydrological niche dimensions with which it is likely to be correlated such as
the amount or the depth of the water resource. For example, temporary water bodies
such as vernal pools often have their own specialized flora of ephemeral species (Deil,
2005) and while it is clear that these communities occupy a β (habitat) niche that is
characterized by a fluctuating water supply, it is less clear whether the coexistence of
species within the pool also depends upon fluctuation. The species are typically zoned from the pool margin to its interior so the zone of a species defines its α niche, but in any particular zone the amount of soil water, the duration of the drought as the pool dries up, the depth of water and the duration of inundation are all correlated so it is impossible to tell without experimental manipulation whether the pattern of temporal variance *per se* is an important dimension of the α niche.

Nygaard & Ejrnaes (2009) factorially manipulated nutrients, water-table depth and degree of water-level variance in mesocosms sown with a standard mixture of 23 wetland species. Both nutrient and water-level treatments influenced the resulting community, with the infertile, dry treatment containing the largest number of species. However, water-level variance had no main or interactive effect on the plant community, implying the absence of temporal niche separation.

The presence of niche differences between species is not in itself sufficient evidence that niche segregation is the actual mechanism of coexistence (Silvertown, 2004), but it is a necessary first step towards testing whether this is the case. Confirmation requires either experimental manipulation of resources to demonstrate that coexistence depends upon the presence of niche differences, or parameterization of community models that can then be manipulated to determine which processes stabilize community composition (Rees *et al*. 1996; Silvertown & Wilson 2000; Groeneveld *et al*. 2002; Levine & HilleRisLambers 2009).

Trade-offs

demonstrated a trade-off between species' tolerances of aeration stress and tolerances of soil drying stress in English meadows where the presence of HNS was supported by field data. An identical pattern was later discovered in fynbos habitats, strongly suggesting that the trade-off in question is fundamental and arises from compromises inherent in the physiology of plant water relations (Araya et al., 2011). In Sonoran desert annuals, Angert et al. (2009) found that coexistence depended on a trade-off among species between water-use efficiency and relative growth rate.

We propose that there are three overlapping types of physiological constraint that contribute to the overall pattern of trade-offs, none of them mutually exclusive (Fig. 1).

First is the edaphic constraint that is imposed by the soil environment and which affects the supply of O₂, water and nutrients to roots. This derives from the fact that soil-pore space may contain water (and dissolved nutrients) or air, but if pores are predominantly filled by water, plants' roots may be deprived of oxygen and if predominantly filled by air, they may be deprived of water and nutrients. This edaphic constraint presumably explains why below-ground competition is so important to hydrological niche segregation (Bartelheimer et al. 2010; Silvertown et al. 2012).

The interactive effects of water and nitrogen in soil were neatly shown in a mesocosm experiment by Nygaard & Ejrnaes (2009). The response of individual species to water regime in this experiment was strongly influenced by nutrient availability and overall species richness was determined primarily by the interactive effects of the water and nutrient treatments. Araya et al. (2012a) demonstrated a direct mechanism
by which water-regime controlled nitrogen availability, thereby revealing how water-
regime can control RGR even when water is itself a non-limiting resource.

Both intrinsic water-use efficiency (WUE: the amount of carbon fixed per unit of
water consumed) and nitrogen-use efficiency (NUE; the amount of carbon fixed per
unit of nitrogen taken up) are highly phenotypically plastic and exhibit a trade-off at
the leaf-level (Patterson et al. 1997). A WUE/NUE trade-off has also been found at
species-level in trees and shrubs (Field et al. 1983) and grasses (Chen et al. 2005;
Gong et al. 2011) where differences in species' relative performance on the trade-off
correlate with their distribution on soil moisture and nutrient gradients. The cause of
the WUE/NUE trade-off may be the dependence of nutrient acquisition on water
uptake.

Second is the biophysical constraint that governs gas exchange by leaves. This arises
from the fact that stomata regulate both CO₂ acquisition and loss of water through
transpiration. Other things being equal, the biophysical constraint means that closing
stomata to limit water loss incurs a cost in CO₂ uptake. This constraint is inherent in
the equation for intrinsic water use efficiency, \[W_g = A/g_s \] which is the ratio of net
assimilation (\(A \)) of CO₂ to the stomatal conductance of water (\(g_s \)) (Seibt et al. 2008).

In drought, plants commonly increase \(W_g \) by closing stomata (decreasing \(g_s \)), but the
degree to which this happens varies both between (Cernusak et al. 2007) and within
species (Edwards et al. 2012). We propose that this variation provides the biophysical
basis for hydrological niche segregation at the drier end of the soil-moisture gradient
where plants must conserve water (Moreno-Gutierrez et al. 2012). Heritable variation
in \(W_g \), which is typically high, is potentially the basis for ecological speciation. Koziol
et al. (2012) found that selection during the domestication of sunflowers resulted in a
decrease in drought tolerance and an increase in growth rate as a result of a trade-off between these traits.

Third is the structural constraint that arises from the physics of water-conducting tissues. The rate at which water moves through a plant is often the determinant of its gas-exchange rate, its photosynthetic rate and thus its relative growth rate (RGR) (Zimmerman 1983). To compete effectively with its neighbours, it may therefore be important for a plant to maximise its transpirational flux through its xylem system. High water fluxes require either steep gradients in water potential and/or wide xylem vessels with high hydraulic conductivity, both of which increase the risk of embolism (Sperry & Tyree 1988). Given this understanding, specialised xylem structure has long been postulated as another possible trade-off with respect to water economy. The topic was being discussed as far back as 1918 (Bailey & Tupper 1918) and its development has been neatly reviewed by (Tyree et al. 1994), who undertook a meta-analysis of twenty earlier studies to demonstrate a trade-off between hydraulic efficiency and safety existed. Smaller xylem conduits especially those characterised by thicker walls, fewer pits and specialized pit membranes (Lens et al. 2013) can tolerate low water potentials without embolizing, giving the plant a margin of safety when conducting water up to its leaves at close to its maximal rate, even if the atmosphere is very dry (Manzoni et al, 2013). Larger vessels on the other hand provide longer, wider conduits with more pits or complete perforations in their walls. These provide higher hydraulic conductivity and therefore greater efficiency, allowing them to conduct an equivalent amount of water without requiring such a steep gradient. However, they are at greater risk of cavitation at a given water potential.
This safety versus efficiency trade-off is discussed by Manzoni (2013), who demonstrated that trees operate at close to their maximum rates of transpiration, and thus are frequently prone to embolism. The authors showed that maximal rates of transpiration were relatively constant within a given environment, but the means by which species achieved them could differ greatly. Some, notably those that tolerate harsh conditions (e.g. many coniferous trees) use fine conducting elements (tracheids), which deliver a low efficiency of water transmission, but provide a high resistance to failure. Deciduous angiosperm trees in contrast tend to produce larger xylem elements (vessels) that provide higher efficiency of water transport when water potentials are high, but which are more vulnerable to cavitation when water potentials fall (Maherali et al. 2004). However, these angiosperms appear able to operate at closer to the their maximum transpiration rates because they also display a greater ability to repair cavitated vessels (Johnson et al. 2012). Water-conducting tissues in trees have been shown to operate at close to their embolism threshold across all biomes, with angiosperms generally displaying a narrower safety margin than gymnosperms (Choat et al. 2012).

This safety versus efficiency trade-off has been linked to species-distribution patterns in forest. Markesteijn et al. (2011) postulated that species’ hydraulic architecture would be a major driver of their partitioning along soil-moisture gradients. They measured hydraulic traits in 40 species in a stand of tropical dry forest and found large differences among species and a strong trade-off between efficiency and safety. They clearly showed the trait that best characterized trees in resource poor areas (whether shaded or dry) was high density of wood (i.e. small xylem element size), as described above, and concluded that hydraulic capacity is integrally linked to niche differentiation.
The field evidence for hydrological niche segregation

We conducted a survey of the literature on the use of water by coexisting plant species in the field using the Web of Knowledge to identify papers that cited foundational studies by Davis & Mooney (1986), Manning & Barbour (1988), Ehleringer et al. (1991) and Silvertown et al. (1999). All papers cited by the citing papers were then evaluated and so on iteratively until no new studies of relevance were found. This search was limited to papers published before March 2013 and we identified 48 studies in which water utilization or distribution on soil-moisture gradients had been statistically compared for at least two coexisting species. The modal species number per study was only 3 (10 studies) and the median was 5 species. These numbers are low, but many of the species studied were actually the dominants in their communities and therefore the differences in their hydrological niches are of particular significance.

The 48 studies have been grouped according to the three mechanisms of hydrological niche segregation mentioned in the introduction. Studies of species growing on a soil-moisture gradient are summarized in Table 1 (studies #1 - #11), those where partitioning of water as a resource was tested are shown in Table 2 (studies #12 - #43) and tests of the temporal storage effect are grouped in Table 3 (studies #44 - #48).

Studies are ranked within each table by the average annual amount of precipitation occurring at the study site. We recognize that this ignores variation in evapotranspiration rates and also groundwater as a source, but these limitations do not obscure the fact shown by the data that plants segregate on hydrological gradients in a remarkably wide range of terrestrial environments ranging from arid to wet. Forty-three of the 48 studies listed reported evidence of significant HNS. An attempt was
made to cross-classify the three groups of studies by the three trade-off types in Fig.1., but very few of the source papers contained enough relevant information to make this possible. Those where clear trade-offs have been demonstrated are singled out for mention below.

Species growing on a soil-moisture gradient

Although only 11 instances of such studies were found by our search methodology (Table 1), there is a mostly older literature containing many similar cases (Rutter 1955; Boedeltje & Bakker 1980; Grootjans et al. 1988; Wierda et al. 1997; Kotowski et al. 1998). Three field experiments are included in Table 1. Reynolds et al. (1997) reciprocally transplanted 3 annuals that occupied soil patches with different soil water content, finding that each did better on its home patch. In an experiment that altered soil moisture in a perennial grassland community on shallow limestone soil, Fridley et al. (2011) (#11) found that 13 of the 25 species investigated showed soil-depth affinities and that the majority of these moved along the soil-depth gradient in response to climate change treatments that directly or indirectly changed soil moisture.

Another experiment on a community where species segregated on parallel gradients of soil depth and soil-moisture content showed that soil moisture was the driving variable in the segregation of the two competing annuals *Sedum smallii* and *Minuartia uniflora* that occupy zones of different soil depth in depressions in granite outcrops (#10). Clear examples are reported of biophysical trade-offs in a mediterranean shrubland (#2) and of edaphic trade-offs in fynbos (#3) and floodplain meadows (#8).
ESSAY REVIEW

An structural trade-off may be the basis of different drought tolerances and coexistence in two species of *Adenostoma* in S. California (#4).

Water partitioning among species

The majority of studies (32/48) surveyed fell into this category (Table 2). Most were descriptive rather than experimental in approach and used stable isotopes to compare the different sources from which co-occurring species drew their water. Twenty-eight studies out of 32 found significant evidence of HNS, but there was negative evidence in five cases (#24, 29, 30, 31, 36, Table 2). In two of them (#29, 30), sampling was conducted at a time of year when water might be expected to be least limiting. Liu *et al.* (2011) conducted their study comparing two subalpine shrubs in Sichuan, China during the monsoon season (#29). In a study of savanna shrubs in Texas (#30), stable isotopes sampled during the season of greatest rainfall showed no differences among species in the depth of water sources utilized, although rooting depth profiles were different. In another study of two evergreen savanna trees *Quercus fusiformis* and *Juniperus ashei* growing in a karst region in Texas (#31), the species also had indistinguishable isotopic signatures of water source during and after drought. However, these species are known to have different water-use strategies, with needle-leaved *J. ashei* able to tolerate drought and sustain gas exchange during water shortage while broad-leaved *Q. fusiformis* does not and a recent study found that there is a phenological dimension to HNS between these species (Kukowski *et al.*, 2013).

Five studies compared overlap in use of water sources over more than one season. In three studies the overlap was least in the season of greatest scarcity (#13, 17, 32,
Table 2), as would be expected if HNS is driven by resource competition for water when it is most limiting. In another study, Verheyen et al. (2008) (#27) found that total evapotranspiration was greater in mixtures of species than in the best performing monocultures, providing evidence of niche complementarity for water use under normal conditions. This effect disappeared in conditions of drought. The fifth study (#33) also found that, in three subalpine woody plants, species that utilized different water sources when rainfall was available were constrained to all use the same source in dry conditions. The critical issue required to interpret all these results is how relative population growth rates among the coexisting species are affected by water availability (Verhulst et al., 2008). If most or all species cease growth in drought, then it is HNS at times of greater water availability that is important to coexistence and not how species use water when it is most scarce. Drought-induced mortality may still differ between species of course.

Trade-offs were investigated surprisingly rarely among these studies, given how large the sample was. From the evidence of structural trade-offs among tropical trees already discussed (Markesteijn et al. 2011), one might guess that they underlie the differentiation among tree species in rooting depth (#42) and degree of dry-season deciduousness (#43) found in seasonally dry forest at Barro Colorado in Panama.

Temporal storage effect

Although only five studies were found in this category, three of them demonstrated that the temporal storage effect promoted coexistence. In a community of Sonoran Desert annuals, Angert et al. (2009) (#45) found that the decoupling of reproductive
success between species that is required by the temporal storage effect was in part
causuated by the biophysical trade-off between relative growth rate (RGR) and intrinsic
water use efficiency (WUE). Species with low RGR and high WUE were able to
exploit small, but frequent rainfall events, while species with high RGR and low
WUE did best under large, infrequent rainfall events. Temporal niche separation
cauased by different responses to the size of variable rainfall events was also found
between two desert shrubs in the Chihuahua desert (Verhulst et al. 2008) (#46), and
among three dominant prairie grasses in Kansas (Adler et al., 2006) (#48). In both of
these cases models demonstrated that the temporal niche differences that were
observed did actually promote coexistence. The two remaining studies in Table 3
found that species of steppe communities in Patagonia (#44) and N.W. China (#47)
differed in their response to rainfall in a fashion that would suggest temporal niche
segregation, although the effect of this on coexistence was not tested.

Discussion

This is the first review of hydrological niches in plant communities and it has revealed
that niche segregation is widespread, occurring in at least 43 out of the 48 studies
examined. It is possible that our survey methodology contained a bias in favour of
finding positive results, but this would not alter the conclusion that HNS has been
found in vegetation types ranging from arid to wet environments and from arctic
alpine to tropical forest.

We divided the 48 cases into three groups, depending upon whether the niche
segregation investigated was on a soil moisture gradient (i.e. spatial) (Table 1),
involved partitioning of water resources by, for example, different rooting depths
(Table 2), or tested temporal differences between species (Table 3). Very unequal
numbers of studies fell into the three categories, but we attach little biological significance to this because sample sizes are influenced to an unknown degree by sampling error and the cost and availability of methods for investigating different mechanisms. For example, measuring water partitioning using stable isotopes has become routine and inexpensive (Dawson et al. 2002) (Table 2, n = 32), compared to the labour-intensive, long-term surveys that are required to evaluate spatial (Araya et al., 2011) (Table 1, n = 11), or temporal (Angert et al., 2007) (Table 3, n = 5) HNS.

One clear pattern that may be of biological significance is the predominance of arid communities among the studies of the temporal storage effect (Table 3). All five studies were of communities with low precipitation values that lay below the median for the sample as a whole 588 mm (n = 48). All the studies demonstrated temporal HNS and three of the five showed that this was sufficient to promote coexistence. Is the temporal storage effect confined to arid communities? It is too early to say, but we believe that there is no reason why it should be. Flooding, as well as rainfall, can be very variable from year-to-year and there is ample evidence among the studies in Table 1 and elsewhere that plants differ in how they respond to this. To our knowledge, the storage effect has not yet been tested in plant communities subject to flooding, but this is an area ripe for investigation.

The majority of the field studies surveyed were observational, but 11 of the 43 studies where HNS was found involved field experiments that manipulated soil moisture and/or plant-plant interactions. The mechanisms generating HNS require further field investigation, but mesocosm experiments have implicated the importance of soil nutrient availability, soil microbial composition, oxygen availability, water deficit and interspecific competition below-ground. The experimental investigation of
hydrological niches began with the now classic lysimeter experiments performed by Heinz Ellenberg in the 1950s (Ellenberg 1953; Hector et al. 2012) in which he grew meadow grasses in monocultures and in mixtures along a soil-moisture gradient created by a gradient of soil depth. There was an almost complete overlap of the fundamental niches among the six monocultures (94%), but a much reduced overlap of realized niches in conditions of interspecific competition (72%). Although there was still substantial overlap of hydrological niches in the mixture, the reduction of 22% caused by interspecific competition was highly significant ($P < 0.001$) (Silvertown et al. 1999). Ellenberg's experiment was a powerful, early investigation of the existence of hydrological niches among meadow grasses. However, the experimental design used in the 1950s was unreplicated and did not take account of possible spatial autocorrelation along the gradient or the covariation of water-table depth with soil volume. All these limitations can be overcome by the use of mesocosms, which are soil containers that permit the independent, replicated manipulation of water-table depth and other variables for plants growing in an outdoor environment (Araya et al. 2010). In a mesocosm competition experiment with two species of Senecio, one native to wet- and the other to dry grassland, Bartelheimer et al. (2010) found that below ground interspecific competition with the roots of grasses was responsible for limiting the growth of the dry-habitat species in wet conditions, where without root competition it could grow quite successfully. A meta-analysis of 38 experiments found that this may be a common phenomenon, with competition below ground often
more important than competition above, especially in competition with grasses and in conditions of low fertility (Kiær et al. 2013).

Using mesocosms, Vivian-Smith (1997) demonstrated the importance of microtopography, showing that segregation occurred among wetland species establishing from seed on hummocks and hollows that were only 10–30 mm different in height. Soil-moisture content, air-filled pore space and nitrogen availability are all greatly influenced by the depth of the water table beneath the soil surface and any or all three could be responsible for the observed effect of microtopography.

Water displaces air from soil pores, reducing oxygen availability and altering the composition of the microbial community, which also segregates on soil-moisture gradients (Wolfe et al. 2006; Cavender-Bares et al. 2009; Araya et al. 2012a; Lennon et al. 2012). Nitrification in soil depends upon an aerobic microbial community, whilst nitrate ions are consumed by an anaerobic community, so waterlogged soils are low in plant-available nitrogen as well as in oxygen (Patrick & Wyatt 1964). Though the availabilities of water, oxygen and nitrogen covary, they can be decoupled experimentally to determine the relationships among the variables. Araya et al. (2012a) manipulated air-filled pore space independently of soil-water content and found that nitrogen mineralization was greatly inhibited at values of air-filled pore space less than 10%. The same effect is seen when soil-water content reduces air-filled pore space below this percentage. In the field, nitrogen-mineralization rate showed an optimum at 40 cm water-table depth, decreasing either side of this value when at shallower depths there was an oxygen deficit and at deeper levels water deficit limited microbial decomposition. The absolute value of the optimum depth is
likely to vary widely according to the pore-size distribution and microbial respiration rate of the soil.

The combination of field and experimental evidence that we have assembled in this review paints a picture of a field that is ripe for synthesis, but that at present lacks some important components. We believe that it is clear that HNS is widespread, but less clear what the precise mechanisms or their consequences are. The starting point for uncovering HNS mechanisms should be the study of the constraints and trade-offs that govern how plants obtain and use water. The three constraints that we identified (Fig.1) are unlikely to be the only ones operating, but the field evidence at present is frustratingly sparse.

The consequences of HNS also need further investigation. In a few cases already mentioned it is clear that HNS is responsible for coexistence and in a larger number we can at least say that HNS influences community assembly. More studies need to use appropriate community models so that HNS can be mechanistically linked to its consequences. This is important not least because improving our understanding of hydrological niches is needed to predict the consequences of environmental change.

Global warming is expected to increase the variability of precipitation patterns (Allan & Soden 2008) which is likely to have a greater impact on the composition of vegetation communities than the change in temperature regime itself (Reyer et al. 2013). Many plant species have such wide latitudinal ranges and exhibit such a broad tolerance of temperature regime that the climatic envelope approach is unlikely to be able to resolve future distributions at anything finer than a regional scale (Zelazowski et al. 2011). In contrast, the sensitivity of species in terms of their preferred hydrological niche is acute (Silvertown et al. 1999) and plants are phenotypically
plastic in response to changes in soil moisture (von Arx et al. 2012) as well as stresses such as flooding (Bailey-Serres & Voesenek 2008).

Bartholomeus et al. (2011) modelled the effects of future climate scenarios on the stresses (both drought and aeration) that grassland plants could be exposed to in future. Their conclusions were that due to increased variability in precipitation, the main impact would be an expansion in the number of sites that experience a combination of both stresses in different seasons of the year. They showed that rare species of conservation importance tend to be absent from such sites and therefore it is this group that would be disproportionately affected by climate-change in the future. They emphasise the point that in order to predict vegetation change, you need to consider the soil moisture regime in detail, because the interaction of the two stresses (lack of soil oxygen and lack of soil water) cannot be easily generalized.

Implicit in their argument is the need to characterize the realized hydrological niche of each species and to build process-based models. Such models now exist for the Netherlands (Witte et al. 2012) and are emerging elsewhere (Robinson et al. 2008; Seneviratne et al. 2010; Maclean et al. 2012; Orellana et al. 2012). However, there is much still to do. Methods in eco-hydrology are not standardized, even for recording variables as basic as the effects on vegetation of manipulating precipitation (Vicca et al. 2012). Cross-correlation is needed between the stable isotope methods used to measure water use by so many studies and direct measurements of plant-available water. The accumulating evidence for hydrological niches in plants now shows that the field merits the attention of an integrated programme linked to global change research.
Acknowledgements

The authors are grateful to Maik Bartleheimer and to two anonymous reviewers for comments on the manuscript.

Literature Cited

Bailey, I. W. & Tupper, W. W. (1918) Size variation in tracheary cells. I. A comparison between the secondary xylems of vascular cryptogams,
ESSAY REVIEW

gymnosperms and angiosperms. *Proceedings of the American Academy of Arts and Sciences, 54*, 149-204.

ESSAY REVIEW

<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s)</th>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Savanna. *Oecologia, 104, 147-155.</td>
</tr>
<tr>
<td>667</td>
<td>Levine, J. M. & HilleRisLambers, J. (2009)</td>
<td></td>
<td>The importance of niches for the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Responses of Shrubs in a Cold Desert Community on the Colorado Plateau.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*Oecologia, 106, 8-17.</td>
</tr>
<tr>
<td>672</td>
<td>Liu, W. J., Liu, W. Y., Li, P. J., Duan, W. P. & Li, H. M. (2010)</td>
<td></td>
<td>Dry season water uptake by two dominant canopy tree species in a tropical seasonal rainforest of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Xishuangbanna, SW China. *Agricultural and Forest Meteorology, 150,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vulnerability of woody plants to xylem cavitation. *Ecology, 85, 2184-2199.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>competition for soil moisture between two desert subshrubs. *American</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Journal of Botany, 75, 885-893.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>isotope ratios in creekside trees in western Kansas. *Environmental and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Experimental Botany, 71, 1-9.</td>
</tr>
</tbody>
</table>

Patrick, W. H. & Wyatt, R. (1964) Soil nitrogen loss as a result of alternate
submergence and drying. *Soil Science Society of America Journal, 28*, 647-
653.

Patterson, T. B., Guy, R. D. & Dang, Q. L. (1997) Whole-plant nitrogen- and water-
relations traits, and their associated trade-offs, in adjacent muskeg and upland

performs better than climatic water variables in tree species distribution

assumption at the heart of neutral theory. *Journal of Animal Ecology, 79*,
1215-1225.

Water source partitioning among trees growing on shallow karst soils in a

Redtfeldt, R. A. & Davis, S. D. (1996) Physiological and morphological evidence of
niche segregation between two co-occurring species of *Adenostoma* in
California Chaparral. *Ecoscience, 3*, 290-296.

Rees, M., Grubb, P. J. & Kelly, D. (1996) Quantifying the impact of competition and
spatial heterogeneity on the structure and dynamics of a four-species guild of

Reyer, C. P. O., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R. P., Bonfante,
A., de Lorenzi, F., Dury, M., Gloning, P., Abou Jaoude, R., Klein, T., Kuster,
T. M., Martins, M., Niedrist, G., Riccardi, M., Wohlfahrt, G., de Angelis, P.,
perspective of extremes: terrestrial plant responses to changing climatic
variability. *Global Change Biology, 19*, 75-89.

heterogeneity and plant competition in an annual grassland. *Ecology, 78*,
2076-2090.

J. S., Knight, R., Knoll, M., Lakshmi, V., Miller, R., Nyquist, J., Pellerin, L.,
hydrological research using near-surface geophysics: a vision for, and review
of, electrical and magnetic geophysical methods. *Hydrological Processes, 22*,
3604-3635.

groundwater and tree growth along the lower Kuiseb River in the hyperarid
ESSAY REVIEW

775 Schietti, J., Emilio, T., Rennó, C. D., Drucker, D. P., Costa, F. R. C., Nogueira, A.,
776 Baccaro, F. B., Figueiredo, F., Castilho, C. V., Knupp, V., Guillaumet, J.-L.,
778 from drainage drives floristic composition changes in an Amazonian

784 Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I.,
786 interactions in a changing climate: A review. Earth-Science Reviews, 99, 125-
787 161.

791 19, 605-611.

793 investigation of the origin of fynbos plant community structure after fire.
794 Annals of Botany, 110, 1377-1383.

795 Silvertown, J., Dodd, M. E., Gowing, D. & Mountford, O. (1999) Hydrologically-
796 defined niches reveal a basis for species-richness in plant communities.

799 populations. The geometry of ecological interactions (eds U. Dieckman, R.

804 integrated perspective on shrub assemblages in a parkland savanna. Ecology,
805 91, 1152-1162.

807 partitioning of water resources among eight woody species in a Hawaiian dry

810 richness and extent of riparian vegetation belts as a result of climate-driven
811 hydrological change along the Vindel River in Sweden. Freshwater Biology,
812 57, 49-60.
ESSAY REVIEW

Table 1. Studies of hydrological niche segregation through the partitioning of space on fine-scale soil moisture gradients. Any differences among species are those found to be statistically significant in the original studies.

<table>
<thead>
<tr>
<th>#</th>
<th>Vegetation type</th>
<th>Location</th>
<th>Mean precip. (mm/y)</th>
<th>Species</th>
<th>Evidence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alpine tundra</td>
<td>Alberta, Canada</td>
<td>~25</td>
<td>3 Salix spp.</td>
<td>Species occupied distinct though overlapping zones along a topographic and soil moisture gradient. Species position on the gradient correlated with physiological measures of water relations, indicating the likely role of HNS.</td>
<td>(Dawson 1990)</td>
</tr>
<tr>
<td>2</td>
<td>Mediterranean shrubland</td>
<td>Spain</td>
<td>288</td>
<td>1 grass and 9 coexisting shrub species of various size</td>
<td>Based upon stable isotope analysis, the ten species segregated along a gradient of water use characteristics from low stomatal conductance (gs) and high WUE to high gs and low WUE. The ranking of</td>
<td>(Moreno-Gutierrez et al. 2012)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>species on the gradient was unaffected by differences in rainfall between years.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fynbos</td>
<td>Western Cape, South Africa</td>
<td>350 - 1400</td>
<td>Restionaceae and fynbos community as a whole separately analysed</td>
<td>Distributions in SEV niche space tested against null models showed HNS among Restionaceae in 7 of 10 sites and for the entire community in 9 out of 10 sites.</td>
<td>(Araya et al. 2011, 2012b)</td>
</tr>
<tr>
<td>4</td>
<td>chaparral</td>
<td>S. California, USA</td>
<td>403</td>
<td>2 co-occurring shrubs Adenostoma fasciculatum and A. sparsifolium</td>
<td>A. sparsifolium had much deeper roots than A. fasciculatum but the latter species was more resistant to xylem embolism caused by water stress than the former. Redtfeldt & Davis(1996) made this comparison between adjacent plants, but Beatty (1987) found that the species usually occupied different microsites and were only rarely found as nearest neighbours.</td>
<td>(Beatty 1987), (Redtfeldt & Davis 1996)</td>
</tr>
<tr>
<td>5</td>
<td>Temperate swamp forest</td>
<td>Budějovická, Czech Republic</td>
<td>575</td>
<td>3 mosses, 11 perennial herbs, a fern, a floating</td>
<td>Distribution of 9 of 17 species varied significantly across a water table depth gradient of about a metre in vertical</td>
<td>(Douda et al. 2012)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
| 6 | serpentine annuals | California, USA | 589 | 3 annuals
Calycadenia multiglandulosaum,
Plantago erecta,
and *Lasthenia californica* | Soil water content varied among patches dominated by the 3 different species. A reciprocal sowing experiment among patches showed a home-site advantage for all 3 species. | (Reynolds *et al.* 1997) |
<p>| 7 | riparian meadow | Oregon, USA | 650 | 18 species of sedge, rush, grass and forb | Median water table depths varied among the 18 species over a 50cm range, but with widely overlapping ranges. | (Dwire et al. 2006) |
| 8 | floodplain meadow | England, UK | 680 | 2 communities containing 83 species of herbaceous meadow plants | Community-wide segregation found in niche space defined by axes of SEVa and SEVd in both communities. | (Silvertown et al. 1999) |
| 9 | mire | SE Norway | 800 | 24 species including 9 vascular plants, 5 | Along a water table gradient of 0–25cm depth, all 24 species exhibited some degree of 'preference' for a particular | (Nordbakken 1996) |</p>
<table>
<thead>
<tr>
<th>#</th>
<th>Vegetation type</th>
<th>Location</th>
<th>Mean precip. (mm/y)</th>
<th>Species</th>
<th>Evidence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sphagnum spp., 6 hepatics and 4 lichens</td>
<td>depth to water table (DWT). The full range of preferences (0–25cm median DWT) was found among the 9 vascular plant species, with species in each of the other 3 groups showing medians between 0–15cm DWT.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>rock outcrop</td>
<td>Georgia, USA</td>
<td>~1,000</td>
<td>Annuals Sedum smallii and Minuartia uniflora</td>
<td>Coexisting annuals shown experimentally to partition the rock depressions in which they grow by soil depth because of the effect this has on soil moisture, favouring M. uniflora in deeper soil that holds more soil moisture and S. smallii in shallow, drier soil.</td>
<td>(Sharitz & McCormick 1973)</td>
</tr>
<tr>
<td>11</td>
<td>limestone grassland</td>
<td>Derbyshire, UK</td>
<td>1, 300</td>
<td>25 species of grass and forb</td>
<td>13 species segregated on gradients of soil depth and 9 migrated along these in response to experimental watering and drought treatments.</td>
<td>(Fridley et al. 2011)</td>
</tr>
</tbody>
</table>
Table 2

Table 2. Studies of hydrological niche segregation through different strategies of water acquisition such as different phenologies or different rooting depths. Any differences among species are those found to be statistically significant in the original studies

<table>
<thead>
<tr>
<th>#</th>
<th>Vegetation type</th>
<th>Location</th>
<th>Mean precip. (mm/y)</th>
<th>Species</th>
<th>Evidence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Dry desert</td>
<td>Namibia</td>
<td>12</td>
<td>3 common trees Acacia erioloba, Tamarix usneoides and Faidherbia albida</td>
<td>Stable isotopes were used to partition water sources between fog, ground water, and soil depths 0 - 1m or 1.5 - 3.0m depth. None used fog water. For adult trees in the dry season, > 50% was obtained from deep soil in A. erioloba & T. usneoides, but the spp. accessed different amounts from shallow soil (6% & 17%). F. albidia used mainly ground water (52%) and deep water (30%).</td>
<td>(Schachtschneider & February 2010)</td>
</tr>
<tr>
<td>13</td>
<td>Desert</td>
<td>Utah, USA</td>
<td>119</td>
<td>5 annuals, 7 herbaceous perennials, 13 woody perennials</td>
<td>Stable isotope analysis indicated that there was no difference among life forms in their exploitation of different water sources in spring, but that differences did</td>
<td>(Ehleringer et al. 1991; Lin et al. 1996)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and a succulent perennial</td>
<td>occur both within and between life forms in summer. Experimental rainfall additions in summer confirmed that species exploit this water source to different degrees.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Desert</td>
<td>California, USA</td>
<td>144</td>
<td>Co-dominant shrubs Haplopappus cooperi and Chrysothamnus teretifolius</td>
<td>Species had different rooting depths. Experimental removal of C. teretifolius (rooting depth 40cm) improved the water status (Ψ) of H. cooperi (rooting depth 20cm), but not vice-versa.</td>
<td>(Manning & Barbour 1988)</td>
</tr>
<tr>
<td>15</td>
<td>Intermountain</td>
<td>Colorado, USA</td>
<td>178</td>
<td>Grasses: Sporobolus airoides and Distichlis spicata; shrubs: Sarcobatus vermiculatus and Ericameria nauseosa</td>
<td>Experimental rainfall treatments and stable isotope analysis demonstrated that the grasses used surface water while the shrubs used ground and surface water. The shrubs differed from each other in their response to variation in surface water availability.</td>
<td>(Kray et al. 2012)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>16</td>
<td>Savanna</td>
<td>Arizona, USA</td>
<td>202</td>
<td>A dominant tree Quercus emoryi and a co-occurring dominant C-4 grass Trachypogon montufari</td>
<td>Stable isotope analysis demonstrated that established trees and grass utilized different water sources. However, 2 month old tree seedlings obtained water from above the zone exploited by the grass, competed in the same depth zone at ages 1 and 2, and then penetrated to deeper soil when older.</td>
<td>(Weltzin & McPherson 1997)</td>
</tr>
<tr>
<td>17</td>
<td>Pinyon-Juniper woodland</td>
<td>Utah, USA</td>
<td>232</td>
<td>Pinus edulis and Juniperus osteosperma</td>
<td>Sap flux and stable isotopes were used to determine the relative use of water by the two species in the two zones 5 - 45cm and > 45cm soil depth. P. edulis depended on summer rain near the surface while J. osteosperma did not. At other times of year the species had similar water utilization to each other.</td>
<td>(West et al. 2007)</td>
</tr>
<tr>
<td>18</td>
<td>Woodland</td>
<td>Utah, USA</td>
<td>319</td>
<td>2 trees Juniperus osteosperma & Pinus edulis & 2 shrubs Artemisia</td>
<td>Stable isotope analysis indicated that C. nauseosus depended on ground water while the other 3 species used both precipitation and groundwater, but to</td>
<td>(Flanagan et al. 1992)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>19</td>
<td>Shortgrass steppe</td>
<td>Colorado, USA</td>
<td>321</td>
<td>tridentate & Chrysothamnus nauseousus</td>
<td>varying degrees.</td>
<td>(Dodd et al. 1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bouteloua gracilis, a shrub Atriplex canescens, and a tree Populus sargentii</td>
<td>Stable isotopes indicated that P. sargentii depended exclusively on ground water during the growing season, while B. gracilis depended exclusively on rainfall from near the soil surface. A. canescens probably used both sources, but mainly rainfall obtained from deeper soil. The effects of experimental removal, separately and in combination, of the grasses & shrubs increased soil water content in different soil layers in a manner consistent with the species' patterns of utilization.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Steppe</td>
<td>Inner Mongolia, China</td>
<td>341</td>
<td>C-3 Grasses: Stipa grandis, Agropyron cristatum, Leymus chinensis; C-4 grass: Cleistogenes</td>
<td>Stable isotopes showed that the shrub Caragama microphylla used only deep soil water, the C4 grass Cleistogenes squarrosa used only summer rainfall, and the C3 grass species used both sources of</td>
<td>(Yang et al. 2011)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>squarrosa; shrub: Caragama microphylla.</td>
<td>Water according to availability.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Mediterranean grassland</td>
<td>Greece</td>
<td>364</td>
<td>Two C-3 grasses Poa bulbosa and Anthoxanthum odoratum, two C-4 grasses Chrysopogon gryllus and Cynodon dactylon, and the C-3 forb Rumex acetosella.</td>
<td>Biomass production was shown to be water-limited in all 5 species. Phenology differed between the C-3 grasses that peaked early in the year, the C-4 grasses that grew later and R. acetosella that peaked in biomass between the two groups of grasses.</td>
<td>(Mamolos et al. 2001)</td>
</tr>
<tr>
<td>22</td>
<td>Mediterranean shrubland</td>
<td>Spain</td>
<td>450</td>
<td>Shrubs: pre-Mediterranean Quercus coccifera, Arbutus unedo, Pistacia lentiscus; Mediterranean Erica multiflora</td>
<td>Stable isotope analysis indicated differences in use of water sources between species with different evolutionary history (pre-Mediterranean vs. Mediterranean) and between some species in the time of day when different sources were exploited.</td>
<td>(Filella & Penuelas 2003)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>---</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>23</td>
<td>Tropical</td>
<td>Lana'i, Hawaii</td>
<td>500</td>
<td>Globularia alypum</td>
<td>Stable isotopes indicated that most species including the two most abundant trees utilized shallow water sources and were drought tolerant, while an evergreen that is dominant in wetter Hawaiian forests and a stem succulent were drought avoiders and used deeper water. Among the subordinate trees using shallow water, one species was separated from other trees by a much larger distance than expected, suggesting competition might influence its spatial distribution.</td>
<td>(Stratton et al. 2000)</td>
</tr>
<tr>
<td>24</td>
<td>Kwongan</td>
<td>Western Australia</td>
<td>531</td>
<td>3 congeneric shrubs: Banksia hookeriana, B. attenuata and B. menziesii</td>
<td>Water relations did not differ among the 3 species during the dry season. Shoot phenology and root distributions were also the same.</td>
<td>(Lamont & Bergl 1991)</td>
</tr>
<tr>
<td>25</td>
<td>riparian</td>
<td>Kansas, USA</td>
<td>586</td>
<td>3 creekside trees</td>
<td>None of the 3 species showed signs of</td>
<td>(Maricle et al. 2000)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>--</td>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td>26</td>
<td>woodland</td>
<td>northern Thuringia, Germany</td>
<td>590</td>
<td>Lonicera tatarica, Morus alba and Celtis occidentalis</td>
<td>Water stress during soil drying. Stable isotopes indicated that C. occidentalis obtained water from a shallower depth than the other two species, even though this species had the deepest roots.</td>
<td>(2011)</td>
</tr>
<tr>
<td>26</td>
<td>old growth temperate broadleaf forest</td>
<td>Umeå, Sweden</td>
<td>600</td>
<td>3 co-dominant trees Fagus sylvatica, Tilia sp., Fraxinus excelsior</td>
<td>Stable isotopes were used to estimate depth of water sources from the soil profile for species growing in single-species clusters and in 3-spp mixtures. Overlap was greater among single species than in mixtures due to Fraxinus altering its source depth in mixture.</td>
<td>(Meissner et al. 2012)</td>
</tr>
<tr>
<td>27</td>
<td>Experimental grassland</td>
<td>Umeå, Sweden</td>
<td>600</td>
<td>Up to 12 grassland species sown in plots containing 1, 2, 4, 8 or 12 species</td>
<td>Community evapotranspiration and biomass production showed over-yielding in control mixtures compared to monocultures, but this was absent in a drought treatment, suggesting complementary use of soil moisture under normal conditions.</td>
<td>(Verheyen et al. 2008)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>28</td>
<td>Alpine meadow</td>
<td>Mt. Balang, China</td>
<td>710</td>
<td>3 herbs Caltha palustris, Veratrum nigrum, Stellera chamaejasme</td>
<td>Stable isotopes showed that the 3 species used water from 4 soil depth zones differently.</td>
<td>(Leng et al. 2013)</td>
</tr>
<tr>
<td>29</td>
<td>sub-alpine</td>
<td>Sichuan, China</td>
<td>711</td>
<td>2 co-dominant shrubs Quercus aquifolioides and Salix lucutiosa</td>
<td>Stable isotopes used to measure use of water from 6 depth horizons in the monsoon month of August. The two species were very similar in their use of water from different depths, both matching relative amounts used to relative amounts of water present in the top 50cm of soil.</td>
<td>(Liu et al. 2011)</td>
</tr>
<tr>
<td>30</td>
<td>savanna</td>
<td>Texas, USA</td>
<td>720</td>
<td>2 shrubs Prosopis glandulosa (overstorey), Zanthoxylum fagara (understorey) and up to 8 other woody understorey</td>
<td>Rooting depth profiles were different among the species (especially P. glandulosa and Z. fagara), but stable isotopes sampled during the season of greatest rainfall (late summer - fall) showed no differences among species in the depth of water sources utilized. Hydraulic lift and recruitment around</td>
<td>(Midwood et al. 1998), (Zou et al. 2005), (Stokes & Archer 2010)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>species</td>
<td>nurse plants produce positive interactions among species.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Karst savanna</td>
<td>Texas, USA</td>
<td>800</td>
<td>Two dominant evergreen trees Juniperus ashei and Quercus fusiformis</td>
<td>ψ_p lower in J. ashei than Q. fusiformis, suggesting that the roots of the former are shallower than those of the latter species. However, stable isotopes of co-occurring trees of the two species showed that both utilized the same water source during drought.</td>
<td>(Schwinning 2008)</td>
</tr>
<tr>
<td>32</td>
<td>Tallgrass prairie</td>
<td>Kansas, USA</td>
<td>835</td>
<td>7 species including 3 dominant C-4 grasses and 4 C-3 forbs and shrubs</td>
<td>Stable isotopes and Ψ measurements showed all species used water from surface (0 - 25cm) soil in the wet summer season. In the dry season C-4 grasses continued to use this source, while C-3 species used predominantly deeper water</td>
<td>(Nippert & Knapp 2007a, 2007b)</td>
</tr>
<tr>
<td>33</td>
<td>Sub-alpine forest</td>
<td>SW China</td>
<td>884</td>
<td>Dominant tree Abies faxoniana, mid-storey tree Betula utilis and</td>
<td>Stable isotopes showed that A. faxoniana depends throughout the year mainly on ground water, while the other two species depend mainly on rainfall, except when</td>
<td>(Xu et al. 2011)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>understory bamboo</td>
<td>this is scarce.</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Seasonally dry forest</td>
<td>Yucatan, Mexico</td>
<td>1,000</td>
<td>3 evergreen Brosimum alicastrum, Talisia olivaeformis, Ficus cotinifolia, 3 deciduous Cedrela odorata, Spondias purpurea, Enterolobium cyclocarpum and 1 semi-deciduous Cordia dodecandra tree species</td>
<td>Stable isotopes sampled in the peak of the dry season were used to estimate the % water used that was derived from three soil depth zones and from ground water. None of the species used ground water for more than 11% of their supply. 3 species F. cotinifolia, S. purpurea, C. dodecandra used water mainly from the soil surface (0 - 15cm) and the other 3 from deep bedrock (70 - 300cm) E. cyclocarpum, B. alicastrum, T. olivaeformis with differing utilizations of water from the zone between 15 - 70cm.</td>
<td>(Querejeta et al. 2007)</td>
</tr>
<tr>
<td>35</td>
<td>chaparral</td>
<td>S. California, USA</td>
<td>1,000</td>
<td>4 coexisting shrubs: Quercus durata, Heteromeles arbutifolia, Adenostoma fasciculatum,</td>
<td>Water use patterns suggested that Q. durata accessed water from a depth of ≥ 2m, H. arbutifolia and A. fasciculatum from 0.75m and R. californica from 0.5m.</td>
<td>(Davis & Mooney 1986)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean preci. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>36</td>
<td>savanna</td>
<td>Côte d'Ivoire, W. Africa</td>
<td>1, 210</td>
<td>Shrubs and bunch grasses</td>
<td>Root distributions and stable isotopes indicate that shrubs and grasses both obtain water from near the surface and do not exploit water from substantially different depth zones.</td>
<td>(Leroux et al. 1995)</td>
</tr>
<tr>
<td>37</td>
<td>Woodland</td>
<td>N. Queensland, Australia</td>
<td>1, 400</td>
<td>4 dominant trees Corymbia clarksoniana, Lophostemon suaveolens, Eucalyptus platyphylla and Melaleuca viridiflora</td>
<td>Stable isotopes sampled towards the end of the dry season for one individual of each species suggested that C. clarksoniana obtained all of its water from ground water, M. viridiflora obtained 53–77% from this source and L. suaveolens and E. platyphylla obtained between 0% and 15% from ground water.</td>
<td>(Cook & O'Grady 2006)</td>
</tr>
<tr>
<td>38</td>
<td>Tropical, seasonal rainforest</td>
<td>SW China</td>
<td>1, 487</td>
<td>2 dominant, canopy trees Pometia tomentosa and</td>
<td>In the dry season G. subaequalis utlized water mainly from shallow soil (< 60cm) and P. tomentosa from deeper soil (></td>
<td>(Liu et al. 2010)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>----</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>39</td>
<td>Savanna</td>
<td>Brasilia, Brazil</td>
<td>1,550</td>
<td>Gironniera subaequalis</td>
<td>60cm). Seedlings of the latter species also acquired significant amounts of water from fog.</td>
<td>(Jackson et al. 1999)</td>
</tr>
<tr>
<td>40</td>
<td>Seasonal tropical forest</td>
<td>Yucatan, Mexico</td>
<td>1,650</td>
<td>Coccoloba diversifolia, Esenbeckia pentaphylla, Vitex gaumeri, Caesalpinia gaumeri, Lonchocarpus</td>
<td>In early but not in late successional forest, stable isotopes indicated that the 3 evergreen species accessed deeper water than the 3 deciduous species.</td>
<td>(Hasselquist et al. 2010)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>----</td>
<td>------------------------------------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>--</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td>castilloi, Lysiloma latisilicium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>riparian tropical rainforest</td>
<td>NE Australia</td>
<td>1, 680</td>
<td>Co-dominant canopy species, tree species: Doryphora aromatica, Argyrodendron trifoliolatum, Castanospora alphandii and climbing palms Calamus australis and C. caryotoides</td>
<td>In the dry season, stable isotopes indicated that two of the trees depended on stream water while the other three species drew water from a zone above the water table.</td>
<td>(Drake & Franks 2003)</td>
</tr>
<tr>
<td>42</td>
<td>Tropical</td>
<td>Barro Colorado Island nature monument, Panama</td>
<td>2, 600</td>
<td>9 species of deciduous and evergreen broadleaf tree, one palm, one liana, and 5 species of small trees and shrubs</td>
<td>Stable isotope analysis during the dry season indicated a high degree of vertical partitioning of soil water, especially among evergreen trees and shrubs.</td>
<td>(Jackson et al. 1995)</td>
</tr>
<tr>
<td>#</td>
<td>Vegetation type</td>
<td>Location</td>
<td>Mean precip. (mm/y)</td>
<td>Species</td>
<td>Evidence</td>
<td>Reference</td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>43</td>
<td>tropical forest</td>
<td>Barro Colorado Island, Panama</td>
<td>2,600</td>
<td>17 spp. of forest trees ranging from evergreen to varying degrees of dry season deciduousness</td>
<td>Stable isotope and water use measurements made during the dry season demonstrated that smaller diameter trees sourced deeper water than larger ones. Ability to maintain sap flow during the dry season varied with leaf phenology, with evergreen species tapping increasingly deeper water as the dry season progressed.</td>
<td>(Meinzer et al. 1999)</td>
</tr>
</tbody>
</table>
Table 3: Studies of hydrological niche segregation in time (temporal storage effect). Any differences among species are those found to be statistically significant in the original studies.

<table>
<thead>
<tr>
<th>#</th>
<th>Vegetation type</th>
<th>Location</th>
<th>Mean precip. (mm/y)</th>
<th>Species</th>
<th>Evidence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Steppe</td>
<td>Patagonia, Argentina</td>
<td>174</td>
<td>6 shrubs Anarthrophyllum rigidum, Adesmia volckmanni, Berberis heterophylla, Mulinum spinosum, Schinus poligamus and Senecio filaginoides</td>
<td>Species varied greatly in their uptake of an experimentally-applied pulse of rainfall applied at the beginning of a dry summer, from 0% use of rainfall to 29%.</td>
<td>(Kowaljow & Fernandez 2011)</td>
</tr>
<tr>
<td>45</td>
<td>Desert</td>
<td>Sonoran desert, Arizona, USA</td>
<td>250</td>
<td>10 species of winter annual</td>
<td>Differences among species in how germination and fecundity respond to year-to-year variability in rainfall creates a storage effect that facilitates coexistence. Species' specialization into temporal</td>
<td>(Angert et al. 2007, 2009)</td>
</tr>
</tbody>
</table>
(hydrological) niches is the result of a trade-off between relative growth rate and water use efficiency.

<table>
<thead>
<tr>
<th>Location</th>
<th>Region</th>
<th>Dominant Species</th>
<th>Population Size</th>
<th>Monitoring and Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desert</td>
<td>Chihuahua, Mexico</td>
<td>2 shrub species: Atriplex acanthocarpa and A. canescens</td>
<td>270</td>
<td>A. canescens was more resistant to drought than A. acanthocarpa, but this relationship was reversed for growth response to rainfall, suggesting that year-to-year variation in rainfall/drought could aid coexistence. (Verhulst et al. 2008)</td>
</tr>
<tr>
<td>Steppe</td>
<td>NW China</td>
<td>3 dominant species: perennial grass Stipa bungeana, a shrub Artemisia ordosia, and a herb Cynanchum komarovii</td>
<td>380</td>
<td>Using stable isotopes, differences among the three species were found in how they utilized water from summer rainfall events of different size. (Cheng et al. 2006)</td>
</tr>
<tr>
<td>Prairie</td>
<td>Kansas, USA</td>
<td>3 dominant perennial grasses (Bouteloua curtipendula, Bouteloua hirsuta, and Schizachyrium scoparium)</td>
<td>580</td>
<td>Long-term monitoring of the grasses was used to build models of the response of each population to climate. The models showed that a positive population growth rate at low density depended on climate variability in 2 of the 3 species. (Adler et al. 2006)</td>
</tr>
</tbody>
</table>
Fig. 1. A Venn diagram of the relationship between plant (ψ_{plant}) and soil (ψ_{soil}) water potentials and the ability of plants to take up CO$_2$, O$_2$, NO$_3^-$ and to resist failure of the vascular system (safety). Double-headed arrows indicate trade-offs and the single-headed arrows indicate the positive relationships between ψ_{plant} and ψ_{soil} and between aerobic conditions and the availability of nitrate in soils.
Fig. 1.