The Open UniversitySkip to content
 

The 26.5 ka Oruanui eruption, Taupo Volcano, New Zealand: development, characteristics and evacuation of a large rhyolitic magma body

Wilson, C.J.N.; Blake, S.; Charlier, B.L.A. and Sutton, A.N. (2006). The 26.5 ka Oruanui eruption, Taupo Volcano, New Zealand: development, characteristics and evacuation of a large rhyolitic magma body. Journal of Petrology, 47(1) pp. 35–69.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1093/petrology/egi066
Google Scholar: Look up in Google Scholar

Abstract

The caldera-forming 26·5 ka Oruanui eruption (Taupo, New Zealand) erupted 530 km3 of magma, >99% rhyolitic, <1% mafic. The rhyolite varies from 71·8 to 76·7 wt % SiO2 and 76 to 112 ppm Rb but is dominantly 74–76 wt % SiO2. Average rhyolite compositions at each stratigraphic level do not change significantly through the eruption sequence. Oxide geothermometry, phase equilibria and volatile contents imply magma storage at 830–760°C, and 100–200 MPa. Most rhyolite compositional variations are explicable by 28% crystal fractionation involving the phenocryst and accessory phases (plagioclase, orthopyroxene, hornblende, quartz, magnetite, ilmenite, apatite and zircon). However, scatter in some element concentrations and 87Sr/86Sr ratios, and the presence of non-equilibrium crystal compositions imply that mixing of liquids, phenocrysts and inherited crystals was also important in assembling the compositional spectrum of rhyolite. Mafic compositions comprise a tholeiitic group (52·3–63·3 wt % SiO2) formed by fractionation and crustal contamination of a contaminated tholeiitic basalt, and a calc-alkaline group (56·7–60·5 wt % SiO2) formed by mixing of a primitive olivine–plagioclase basalt with rhyolitic and tholeiitic mafic magmas. Both mafic groups are distinct from other Taupo Volcanic Zone eruptives of comparable SiO2 content. Development and destruction by eruption of the Oruanui magma body occurred within 40 kyr and Oruanui compositions have not been replicated in vigorous younger activity. The Oruanui rhyolite did not form in a single stage of evolution from a more primitive forerunner but by rapid rejuvenation of a longer-lived polygenetic, multi-age ‘stockpile’ of silicic plutonic components in the Taupo magmatic system.

Item Type: Journal Article
ISSN: 1460-2415
Extra Information: Some of the symbols may not have transferred correctly into this bibliographic record and/or abstract.
Keywords: Taupo Volcanic Zone; Taupo volcano; Oruanui eruption; rhyolite, zoned magma chamber; juvenile mafic compositions; eruption withdrawal systematics
Academic Unit/Department: Science > Environment, Earth and Ecosystems
Science > Physical Sciences
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Item ID: 4201
Depositing User: Stephen Blake
Date Deposited: 04 Jul 2006
Last Modified: 02 Dec 2010 19:51
URI: http://oro.open.ac.uk/id/eprint/4201
Share this page:

Altmetrics

Scopus Citations

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk