Optimal digital correlated double sampling for CCD signals

How to cite:

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1049/el.2014.0759

© 2014 The Institution of Engineering and Technology

Version: Accepted Manuscript

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Optimal digital correlated double sampling for CCD signals

K. D. Stefanov and N. J. Murray

The noise performance of digital correlated double sampling (DCDS) for readout of charge coupled devices (CCD) with dominant white noise is presented. The trade-offs between analogue and digital signal filtering and the impact on the sampling rate are investigated and numerically simulated for realistic systems. The results can be used to select the signal bandwidth, the settling accuracy and the ADC sampling rate for optimal DCDS noise performance.

Introduction: Digital correlated double sampling (Digital CDS, DCDS) is finding increasing use in high performance CCD camera systems, displacing traditional analogue techniques such as dual slope integration and clamp-and-sample. The main advantage of a DCDS system is the flexibility in configuration of different readout rates without component changes while maintaining sensor-limited noise performance. Its ability to suppress burst noise and electromagnetic interference by “blanking” of selected signal portions can also be valuable. In addition, sophisticated signal processing techniques for suppression of 1/f noise become possible.

The DCDS technique oversamples the CCD output signal in order to obtain and subtract the optical signal level from the reset level. This is essential for eliminating the reset noise, and allows further noise reduction by digital signal processing. It has been shown [1-2], that for white noise dominated systems the differential averaging, also known as the ideal dual slope integrator, is the optimal noise reduction method because it is a “matched filter” for CCD signals and results in the highest signal-to-noise ratio. In the digital domain the CDS is implemented by averaging sufficient number of samples of the signal and the reset levels, followed by their subtraction [3].

Noise analysis: The assumption of predominantly white noise is valid for the majority of CCD systems today. Modern CCDs, employing buried channel source follower output, show dominant white noise at reasonably fast readout rates; 1/f noise starts to become significant and lower speeds, usually below 100 kpix/s. A typical CCD output signal is shown in Fig. 1, and consists of node reset period with duration , followed by the reset and the signal levels. The signal settles to its final value within the time determined by the time response of the system. The CCD signal is continuously sampled by an ADC, taking N samples during , and ignoring the M samples during the settling time. The reset duration can be usually a small fraction of the clock period and can be ignored for simplicity of the following analysis.

![Fig. 1 Timing diagram of a CCD output signal.](image)

For white noise dominated system, the DCDS output signal is the difference between the averaged signal and the reset levels. The output signal of this differential averager (DA) can be written as:

\[y = \frac{1}{N} \sum_{i=0}^{N-1} (x[i] - x[i-N-M]) \]

where \(x[i] \) is the i-th input signal sample. The corresponding z-transform is:

\[Y(z) = X(z) \frac{1}{N} \frac{(1 - z^{-N-M})(1 - z^{-N})}{1 - z^{-1}} \]

(2)

The power transfer function is obtained from the z-transform in (3), where \(f \) is the frequency and \(T \) is the ADC sampling period.

\[|H_{DA}(f)|^2 = \frac{1}{N^2} \frac{4\sin^2(N\pi f T)\sin^2(N + M)\pi f T)}{\sin^2(\pi f T)} \]

(3)

A practical CCD system would normally have low pass frequency response determined by the bandwidth of the source follower and the following amplification stages, and a separate anti-alias (AA) filter may be included. Assuming single pole low pass response with a dominant time constant , the system power transfer function becomes

\[|H_{DALS1}(f)|^2 = \frac{1}{N^2} \frac{4\sin^2(N\pi f T)\sin^2(N + M)\pi f T)}{\sin^2(\pi f T)[1 + (2\pi f T)^2]} \]

(4)

When \(T \rightarrow 0 \), corresponding to infinite bandwidth, the settling time and the number of samples \(M \) approach zero. If we let \(N \rightarrow \infty \), then (4) becomes the power transfer function of the ideal dual slope integrator [2,4]:

\[|H_{DALS2}(f)|^2 = \frac{4\sin^4(\pi f T_{set})}{(\pi f T_{set})^2} \]

(5)

The integration time is the maximum available time, given by:

\[T_{set} = NT = T/\pi \]

(6)

The output RMS noise of the ideal dual slope integrator can be found by integrating (5) for constant CCD white noise density and substituting from (6):

\[V_{DS} = \left(\int_0^{1/2} e_{CCD}^2 |H_{DA}(f)|^2 df \right)^{1/2} = e_{CCD} \sqrt{2/\pi} \]

(7)

The expression (7) gives the lowest possible noise from a CDS processor. Other sources of noise, such as amplifier and ADC quantisation noise are assumed to be negligible, as should be the case in a well-designed system. A real-world DA is characterised by \(T > 0 \) and finite number of samples \(N \). Higher \(T \) increases the amount of analogue filtering at the expense of less digital filtering, as the number of samples \(N \) decreases due to the longer settling time. Similarly to (7), the output RMS noise of the differential averager can be calculated by integrating (4) numerically with the number of samples \(M \) and \(N \) determined from the following relationships:

\[M = T/T_{set} \]

\[T = 2(N + M)T \]

(8)

For a single pole low pass response \(T_{set} \) can be determined from the dominant time constant and the settling error \(\varepsilon \):

\[T_{set} = T_{p} \frac{\ln(1/\varepsilon)}{\ln(1/\varepsilon)} \]

(9)

Using (4), (8) and (9) we can calculate the output RMS noise of the DA as a function of only 4 parameters: the signal bandwidth \(BW = 1/2\pi T_{set} \), the settling error \(\varepsilon \), the CCD clock frequency \(F_{C} = 1/T \) and the ADC sampling frequency \(F_{S} = 1/T \). It is important to note that the noise performance of the differential averager can only approach the ideal dual slope integrator, therefore calculating the noise ratio \(NR = V_{DALS1}/V_{DS} \) provides a convenient figure of merit.

Results: Fig. 2 shows the calculated \(NR \) for different settling errors as a function of the analogue bandwidth \(BW \) for a system with single pole low pass response, ideal AA filter and \(F_{C} \)=100 MHz. The CCD clock frequency \(F_{C} \) is 1 MHz, which is a typical value for a wide range of applications. It can be seen that \(NR \) falls to within 5% of the ideal at \(BW=20 \text{MHz} \) and \(\varepsilon=0.1 \text{,} \) corresponding to \(N=45 \text{ samples. Increasing the system bandwidth further brings only a small improvement, and at } BW=50 \text{MHz the noise is 1.8% above the theoretical minimum.} \)

The calculation of \(NR \) can be used to select the optimal parameters for a DCDS system, given certain CCD clock frequency and settling error,
and can be an important design tool. In particular, the ADC sampling rate and the system bandwidth can have implications on the power consumption, the complexity and the cost of the system. In Fig. 3 the noise ratio is calculated for $F_s=40$ MHz. It can be seen that NR is 5% from the optimum for $\varepsilon=0.1\%$ at $BW=16$ MHz and $N=18$ samples. In this case an identical noise performance is achieved at 2.5 times lower ADC sampling frequency and slightly lower analogue bandwidth, which could be beneficial for the system design. If the requirements on the settling accuracy are relaxed (leading to sizable, but correctable gain error), good noise performance can be achieved at even lower BW and F_s. As a rule of thumb, F_s has to be about 20 times larger than F_s for $\varepsilon=0.1\%$ and 10 times larger for $\varepsilon=1\%$, if the noise performance is to be within 10% of the theoretical minimum.

As expected, the insufficient stop-band attenuation of the single pole response causes additional noise due to aliasing. The lowest noise is achieved at the optimal system bandwidth of 9 MHz, however the noise is still 18% above ideal.

For the two pole system without an additional AA filter the lowest noise is achieved in the bandwidth range between 7 MHz and 13 MHz. The noise is about 10% higher than ideal, and above 13 MHz begins to rise due to aliasing. This could be adequate for most applications and offers a good balance between noise performance and system complexity.

Conclusion:

The noise performance of a DCDS system is analysed for a realistic system in terms of 4 parameters: signal bandwidth, settling accuracy, CCD clock and ADC sampling frequencies. When the noise is predominantly white and for large number of samples, the DCDS approaches the noise levels of the ideal dual slope integrator, which is the optimal signal processing method. Using numerical integration, the DCDS noise is calculated for few representative scenarios, highlighting the trade-offs in selecting the system parameters, and allowing optimisations to be made. It is shown that a system with two pole low pass system response could offer adequate noise performance in most situations while eliminating the expensive anti-alias filter.

K. D. Stefanov and N. J. Murray (Centre for Electronic Imaging, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK)

E-mail: Konstantin.Stefanov@open.ac.uk

References

Fig. 2 Noise ratio DALP1/DS as a function of the settling error. The ADC sampling frequency is 100 MHz and an ideal AA filter is used. The right hand side axis shows the number of samples N.

Fig. 3 Noise ratio DALP1/DS for 40 MHz ADC sampling frequency.

Fig. 4 Noise performance of single pole and two pole DCDS systems with and without an additional AA filter for 40 MHz ADC sampling frequency and $\varepsilon=0.1\%$. The result is shown for 40 MHz ADC sampling frequency. (a) For the single pole system, the noise is about 10% higher than ideal. (b) For the two pole system without an additional AA filter the lowest noise is achieved at the optimal system bandwidth of 9 MHz, however the noise is still 18% above ideal.

Given that the system is oversampled, it is worth investigating whether the overall system frequency response could be used as a substitute to the additional high performance AA filter. Depending on the cut-off frequency, the single or two pole low pass responses have to be applied with care due to possible aliasing and additional in-band noise due to insufficient stop-band attenuation. Fig. 4 shows the noise ratio for systems with single and two pole low pass response (with equal poles) without an additional AA filter for $\varepsilon=0.1\%$. The result is compared to identical systems using ideal AA filters. In the case of two pole low pass response the bandwidth is:

$$BW\approx 3\Delta f = \frac{1}{2\pi \tau D} \sqrt{\frac{\varepsilon}{2}} - 1,$$

and the settling time to 0.1% is $9.2\tau D$. From (4), the power transfer function becomes:

$$|H_{DALP2}(f)|^2 = \frac{1}{N^2} \frac{4\sin^2(N\pi f t_d)\sin^2((N + M)\pi f t_d)}{\sin^2(\pi f t_d)[1 + (2\pi f t_d)^2]^2}$$

(11)