Electron induced chemistry: a new frontier in astrochemistry

Link(s) to article on publisher's website:
http://dx.doi.org/doi:10.1039/C4FD00004H

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Electron induced chemistry: a new frontier in astrochemistry

Nigel J. Mason, Binukumar Nair, Sohan Jheeta and Ewelina Szymańska

Received 31st January 2014, Accepted 11th February 2014
DOI: 10.1039/c4fd00004h

The commissioning of the ALMA array and the next generation of space telescopes heralds the dawn of a new age of Astronomy, in which the role of chemistry in the interstellar medium and in star and planet formation may be quantified. A vital part of these studies will be to determine the molecular complexity in these seemingly hostile regions and explore how molecules are synthesised and survive. The current hypothesis is that many of these species are formed within the ice mantles on interstellar dust grains with irradiation by UV light or cosmic rays stimulating chemical reactions. However, such irradiation releases many secondary electrons which may themselves induce chemistry. In this article we discuss the potential role of such electron induced chemistry and demonstrate, through some simple experiments, the rich molecular synthesis that this may lead to.

1 Introduction

The next decade promises to be the ‘decade of astrochemistry’, with recent discoveries preluding an impending explosion of chemical data from new telescopes (such as ALMA) that will reveal the ‘molecular universe’. The identification of now more than one hundred eighty molecular species in the Interstellar Medium (ISM) (http://www.astro.uni-koeln.de/cdms/molecules, 2013), ranging from the simplest (and most abundant) diatomics H₂ and CO, to the more complex organics (including aldehydes, esters and ketones), provides significant challenges to our understanding of chemistry under the ‘extreme conditions’ that prevail in the ISM. The ISM is both cold (<10 K) and empty (pressures equivalent to 10⁻¹³ Torr) such that it may appear that reaction rates will be slow even when two reactants collide in the vastness of space, negating the probability of molecular assembly. Faced with this apparent misnomer a new hypothesis has been formulated that suggests chemical synthesis may occur on the surfaces of small (micron) sized dust grains found in the ISM (with about 1% abundance by mass). These dust grains act as ‘chemical factories’, accreting simple molecular material over the long lifetime of the ISM dust clouds ready for ‘triggering’ by an...
external energy source to form more complex molecules that are subsequently desorbed from the grain surface to be detected by terrestrial observations based on their spectroscopic signatures (in microwave, THz and IR). Direct reactions may occur when an impinging atom/molecule interacts with the icy surface, e.g. the recombination of two H atoms, $H + H \rightarrow H_2$, is believed to be the only method for forming the H_2 background that dominates space. Similarly, hydrogenation of CO on dust grains may lead to the formation of methanol in a four step process:

$$\text{CO} + H \rightarrow \text{HCO} \rightarrow \text{H}_2\text{CO} \rightarrow \text{CH}_3\text{OH}$$

However, such routes are speculative and appear inefficient, with many integrated steps being needed to create the large species such as cyanomethanimine, NHCHCN, and ethanamine, CH$_3$CH$_2$NH$_2$, recently identified using radioastronomy. Since cyanomethanimine is believed to be one step in the process that can lead to the nucleobase adenine, while ethanamine is thought to play a role in forming alanine, one of the twenty amino acids in the genetic code, the presence of such complex species in the ISM suggests that prebiotic chemistry seeding life itself may start in the ISM and be an integral part of the star and planet formation process.

Ice covered dust grains in the ISM are embedded in the interstellar radiation field comprising cosmic rays (90% of which are protons), and once dust clouds collapse to form a protostar may be subject to UV radiation. UV induced photochemistry has been the subject of extensive laboratory studies which demonstrate that irradiation of ice analogues may lead to the synthesis of complex (prebiotic) molecules including amino acids. These studies have traditionally used lamp sources to mimic the ISM UV spectrum, but more recently have used synchrotron radiation to irradiate ice analogues, demonstrating that UV induced synthesis is both practical and wavelength dependent, but the product yields were quite low.

Deeper in the cloud the UV field is weak, and chemistry may be induced by deeper penetrating X-rays or cosmic rays (protons) which produce similar products to those observed with UV radiation of the same ice, albeit with different (higher) yields. The similarity in the products suggests that there may be a common chemistry occurring in such irradiation phenomena, and it is now postulated that this may be chemistry induced by electrons. Secondary electrons are produced when any ionising radiation interacts with solid ices, indeed one high energy cosmic ray may release 10^4 secondary electrons in its passage through a single ice covered dust grain, and such electrons may themselves trigger chemistry, with the mean kinetic energy of these electrons below 20 eV. Thus if we are to understand the synthesis of complex molecular species in the ice mantles of dust grains in the ISM, it is necessary to understand the chemistry induced by the most abundant species in any ice processing – electrons, and often low energy electrons close to the ionisation potential of absorbed molecular species. In this paper we will explore typical chemistry induced by electrons within thin layers of ice mantle as experienced on dust grains in the ISM.

2 Experimental apparatus

The electron irradiation experiments described in this paper were performed inside an ultra-high vacuum (UHV) chamber at the Molecular Physics Laboratory
at the Open University at Milton Keynes, UK. Fig. 1 presents a schematic illustration of the experimental setup employed. The chamber aims to simulate the physical conditions in the ISM by providing a base pressure of below 2×10^{-8} mbar, with the residual gas being mainly molecular hydrogen, as in the ISM. A clean ZnSe substrate cooled by a closed cycle He cryostat system provides a surface on which ISM analogues may be prepared by ‘background’ deposition. The vapour is introduced at a rate of 1×10^{-6} mbar over 300 s. Typically, ice layers are formed at 14 K and are amorphous in nature. The substrate may be heated to initiate phase changes (from amorphous to crystalline ice) and to initiate Temperature Programmed Desorption (TPD) to analyse the products of electron irradiation. The ice samples may also be analysed in situ by Fourier transform infrared (FTIR) spectrometry using a NICOLET FTIR spectrometer operating in the 3500–800 cm$^{-1}$ region with a spectral resolution of 2 cm$^{-1}$. Infrared spectra of the clean substrates were acquired before each experiment for background correction purposes.

Irradiation of the ice samples was performed using a collimated electron beam generated from a Kimball Physics electron gun. The electron beam current was measured with a Faraday cup mounted at the end of the electron gun. The bombarded area was about 0.28 cm2, and the beam current at the sample was estimated to be 1.7μA, $\sim 10^{13}$ electrons s$^{-1}$. The employed electron flux at the sample was roughly 3.7×10^{13} electrons cm$^{-2}$ s$^{-1}$ (2.3×10^{15} electrons cm$^{-2}$ min$^{-1}$). This flux is much higher than that encountered in any astrophysical context (Table 1); for example, the electron flux at the Earth’s orbit is about 1×10^{7} electrons cm$^{-2}$ s$^{-1}$, such that one minute of irradiation in the laboratory corresponds to roughly 6 years in space outside the Earth’s atmosphere.

In the present set of experiments we used 100–5 keV electrons to irradiate the ices. The penetration depth of 2 keV electrons may be estimated using Monte Carlo simulations drawn from the CASINO code.12 The penetration depth (for 95% of the beam) is around 100 nm, resulting in a LET (Linear Energy Transfer) of roughly 20 keV m$^{-1}$. For the employed electron flux, and assuming a typical sample density of 1.16 g cm$^{-3}$, the energy delivered by the beam into the sample
every second (ice layers within the first 100 nm) was about 0.8 eV molecule\(^{-1}\). This value is the same amount of energy delivered by cosmic rays to a typical interstellar ice grain over the few billions (\(10^9\)) of years that a dust grain is expected to survive. Thus in the present experiments we may deposit as much energy into the irradiated ice as a typical ice covered dust grain in the ISM may receive in its entire life cycle. Thus we must be aware that in astrochemistry analogue experiments (with photons or electrons) we are greatly enhancing the molecular synthesis rates that occur in these regions. In mitigation it should however be noted that once/as a protostar forms there may be a period of more intense bombardment by such particles.

3. Electron induced molecular synthesis

3.1 \(\text{O}_2\) ice films

As a first, simple, example of electron induced synthesis, consider a pure film of molecular oxygen\(^{13,14}\). Irradiation of such a film by electrons with energies above \(~10\) eV leads to the dissociation of molecular oxygen to release reactive O atoms which can react with remaining \(\text{O}_2\) species. What follows is characteristic of the well-known chemistry in the Earth’s stratosphere:

\[
\text{O} + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M}
\]

The formation of ozone requires the presence of a ‘third body’, \(\text{M}\), to stabilise the highly excited nascent ozone. In the Earth’s stratosphere, \(\text{M}\) is commonly \(\text{N}_2\) or another \(\text{O}_2\), and thus ozone formation is limited to lower altitudes where the probability of a three body reaction is sufficiently high. In contrast, in a solid film \(\text{M}\) maybe the surface itself or neighbouring molecules. Hence rates of ozone formation in a solid ice film are high. Further details of the dynamics of such a molecular synthesis may be determined by using a mixture of \(^{16}\text{O}_2\) and \(^{18}\text{O}_2\) leading to the formation of many different isotopologues of ozone (Fig. 2)\(^{14}\).

This simple experiment demonstrates many of the key features of electron ice irradiation experiments. It is efficient (ozone yields are observed as soon as irradiation starts), and depends strongly on the temperature of the ice, which

![Fig. 2 The formation of six ozone isotopomers and isotopologues, \(^{16}\text{O}^{16}\text{O}^{16}\text{O},\n^{18}\text{O}^{16}\text{O}^{18}\text{O},\n^{16}\text{O}^{16}\text{O}^{18}\text{O},\n^{18}\text{O}^{18}\text{O}^{16}\text{O},\n^{16}\text{O}^{18}\text{O}^{16}\text{O},\n^{18}\text{O}^{16}\text{O}^{18}\text{O}\), has been studied in electron-irradiated solid oxygen \(^{16}\text{O}_2\) and \(^{18}\text{O}_2\) (1 : 1) ice at 11 K.](image)
influences the mobility of product reactants. Indeed if the ice is left dormant after a period of irradiation at a low temperature (14 K) (e.g. for an hour) and then subsequently warmed, ozone yields increase during the warming, since O atoms trapped in the irradiated ice become mobile and react away from the site of their original production. Similarly, in space a radical released by one cosmic ray may remain dormant in the ice for long periods until another reactive species is produced in a second irradiation event or until the grain is warmed (e.g. by a shock wave). Ice covered dust grains have therefore been labelled ‘radical bombs’, with the energy released by such reactions leading to the desorption of products from the surface so they may be observed. Such observations also pose questions as to the validity of simple TPD as a method for determining products of irradiation, since the TPD warming may itself initiate radical reactions, and therefore a combination of in situ (FTIR) studies of the irradiated ice with TPD is recommended for such astrochemical studies.

The temperature dependence of the product yields may also be counterintuitive. The ozone monomer column density is highest in ices prepared at the lowest

<table>
<thead>
<tr>
<th>Region</th>
<th>Residence time of ices in region (years)</th>
<th>UV Flux, 10 eV photon (eV cm(^{-2}) s(^{-1}))</th>
<th>Energy dose (eV molecule(^{-1}))</th>
<th>Cosmic ray photons Flux, 1 MeV proton (eV cm(^{-2}) s(^{-1}))</th>
<th>Energy dose (eV molecule(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS cold dense cloud (0.02 (\mu)m ice)</td>
<td>(10^6, 10^7)</td>
<td>(1.4 \times 10^4)</td>
<td>0.4</td>
<td>(1 \times 10^6)</td>
<td>0.3</td>
</tr>
<tr>
<td>Oort cloud and KBO Region</td>
<td>(4.6 \times 10^9)</td>
<td>(9.6 \times 10^8)</td>
<td>(10^8) (top 0.015 (\mu)m layer)</td>
<td>Energy dependent flux 150 (0.1 (\mu)m), 55–5 (1–5 m)</td>
<td></td>
</tr>
<tr>
<td>Jovian satellites, e.g. Europa</td>
<td>(<1 \times 10^8)</td>
<td>(4 \times 10^{13})</td>
<td>(10^{13}) (top 0.015 (\mu)m layer)</td>
<td>Magnetospheric ions, 150 (1 cm (10^4) years)</td>
<td></td>
</tr>
<tr>
<td>Typical lab experiment</td>
<td>(4.6 \times 10^{-4})</td>
<td>(8.6 \times 10^{14})</td>
<td>14</td>
<td>(7.8 \times 10^{13})</td>
<td>7 (\times 10^{10})</td>
</tr>
</tbody>
</table>

Fig. 3 (a) Temporal growth of the column density of the ozone monomer. (b) Temporal growth of the \([\text{O}_3\cdots\text{O}]\) complex.
temperature of 11 K (Fig. 3), while the column density of the [O₃⋯O] complex increases as the temperature of the oxygen matrix is increased. This may be due to the presence of nascent O₂ in the form of weakly bound dimers (O₂) with the O + O₂ reaction occurring within the dimer, a process more commonly called an ‘intercluster’ reaction, in contrast to the case at higher temperatures, were the dimer is unstable and the ice may be treated as independent O₂ molecules in a solid ice matrix.13,14

Having reviewed the possible physico-chemical processes that may occur in the irradiation of ices, we will now illustrate the variety of electron induced chemistry that may occur in some simple ISM ice analogues.

3.2 Irradiation of methanol ice

Methanol (CH₃OH) has been detected through infrared spectroscopy in some low- and high-mass protostars such as W33A and RAFGL 7009, in comets such as Hale–Bopp, and in other solar system bodies such as 5145 Pholus, a centaur planetoid. It is the sixth most abundant molecule after H₂O, CO, CO₂, NH₃ and O₂ in protostars (∼6%) and comets (∼2%), such that it is proposed to be an important precursor of more complex prebiotic molecules, the synthesis of which may be induced by UV or cosmic ray bombardment.

Fig. 4 shows the production of CO and CO₂ from the electron irradiation of methanol. The products and yields show little energy dependence, with 100 eV, 1 keV or 5 keV bombardment producing very similar yields, suggesting that the bulk of the formation is induced by lower energy electrons as the incident electrons thermalize in the ice. Indeed, these results are in good agreement with the low energy electron experimental data.16,17

Fig. 4 also shows that ice modification begins to take place almost immediately upon irradiation. The ¹²CO₂ column density is lower than that of ¹²CO, as might be expected if CO liberated from CH₃OH is a precursor to CO₂ formation. Other products readily detected by FTIR spectroscopy of the ice are H₂CO and CH₄, demonstrating the rich chemistry in the ice film upon electron irradiation. The loss of nascent methanol is reflected in the formation of these products by a conservation of total molecular mass (Fig. 5). Irradiation products gradually increase in concentration until they are present with sufficient intensity that they in turn are dissociated by irradiating electrons; this is demonstrated in the

![Fig. 4](image-url)
Fig. 4 Formation of CO and CO₂ by electron irradiation of a solid methanol ice film at 30 K by (a) a 100 eV and (b) a 1 keV electron beam.
measured CH$_4$ yield (Fig. 6), where after a fluence of \sim1.8 electrons cm$^{-2}$ a reduction in the amount of methane product is observed. A very similar destruction curve for CH$_4$ was observed by Hudson et al.18 and Baratta et al.19

3.3 Irradiation of a mixed methanol–ammonia ice

In the ISM the ice grain mantles will be a complex mixture of ices. The richer the ice composition, the more varied the species produced. As a simple example of
the range and complexity of the chemistry that may occur in such an irradiated ice mixture, we examined the electron irradiation of a 1 : 1 mixture of ammonia and methanol. Ammonia is prevalent across the ISM in protostars, comets and on the surface of many planetary bodies. Indeed it is now postulated that a large part of the nitrogen available to the early solar system was in the form of highly fractionated ammonia.\(^{20}\) Once again, high yields of CO and CO\(_2\) are observed (Fig. 7), but in contrast to pure films of methanol the CO\(_2\) column densities are higher than those of CO since the CO produced is being utilised to make other compounds, such as isocyanic acid (HNCO), formed from combining the product of NH\(_3\) dissociation (NH\(_2\) radical) with CO.

\[
\text{NH}_3 \rightarrow \text{NH}_2 + \text{H}
\]

\[
\text{NH}_2 + \text{CO} \rightarrow \text{HNCO} + \text{H}
\]

Prior to the irradiation of the NH\(_3\)–CH\(_3\)OH film we hypothesised that we may observe methyl amine (CH\(_3\)NH\(_2\)), but no signature of this molecule was observed. In contrast, strong yields of formamide (HCONH\(_2\)) were observed (Fig. 8). HCONH\(_2\) can be formed from the reaction of NH\(_3\) with formic acid (HCOOH) or methyl formate (CH\(_3\)OHCO), which is a product of the esterification of CH\(_3\)OH and HCOOH.

\[
\text{HCOOH} + \text{NH}_3 \rightarrow \text{HCONH}_2 + \text{H}_2\text{O}
\]

and/or

\[
2\text{CH}_3\text{OHCO} + 2\text{NH}_3 \rightarrow 2\text{HCONH}_2 + 2\text{H}_2\text{CO} + \text{H}_2
\]

Formic acid and methyl formate (which may also be formed by irradiation of pure methanol ice films\(^{21}\)) were both observed in this experimental study during the irradiation of NH\(_3\)–CH\(_3\)OH, and once again reveal the complexity of the electron induced chemistry even in a simple binary ice. It is thought that during ‘chemical evolution’, HCONH\(_2\) may have been used as an informational polymer, since, under certain conditions, it can form acyclonucleosides.\(^{22}\) These then

Fig. 8 The formation of formamide during irradiation of a NH\(_3\)–CH\(_3\)OH ice at 30 K by 1 keV electrons.
combine with base purines and pyrimidines to yield acyclonucleotide, which could have played a role very similar to the part played by RNA as a repository vehicle for genetic information in the ‘RNA world’ hypothesis. Thus, even in a simple binary ice the ingredients for biochemistry may be readily formed by simple electron irradiation.

4. Electron induced anion chemistry

One of the most exciting developments in recent molecular physics has been the discovery that low energy electrons (LEE) may not only dissociate the molecular target, but may do so at well-defined reaction sites, often leading to almost 100% bond selectivity and thus initiating controlled chemical processing in the local environment. The process by which LEE can induce such bond selective molecular fragmentation is known as dissociative electron attachment (DEA) (Fig. 9). An incident electron may be captured by the molecular target (XY) to form an excited state of the molecular negative ion XY$. This state, commonly called a temporary negative ion (TNI), generally decays by ejecting the excess electron within a finite time depending on its lifetime (a process called auto-detachment), but the molecular negative ion may also decay through dissociation, leading to the formation of a stable negative ion X^- and a neutral (often radical) fragment (Y), a ‘reaction’ summarized as $e^- + XY \rightarrow XY^- \rightarrow X^- + Y$. In contrast to direct electron impact, where the incident electron must have an energy of several eV to dissociate a molecule, DEA can dissociate a molecule at energies below the dissociation energy of the ground state. In numerous cases
DEA effectively occurs at electron impact energies of a few meV, that is at thermal energies (kT), and generally these low energy processes have very large cross sections of hundreds to thousands of \AA^2, which are much larger than cross sections for direct electron (or photon) induced dissociation discussed above.

Should DEA occur in a dense medium such as in the condensed phase, within a surface layer or within a cluster, the neutral and generally more highly reactive products produced by DEA (Y) may then initiate further chemistry through reactions with neighbouring molecules (AB), i.e. $Y + AB \rightarrow AY + B$. As an example, consider a mixed cluster of NF$_3$ and CH$_3$Cl (Fig. 10). The cross section for Cl$^-$ production from CH$_3$Cl by direct electron impact is negligible ($<10^{-23}$ cm2). However, F$^-$ ions may be liberated from NF$_3$ and may react with CH$_3$Cl by the well-known nucleophilic displacement (SN$_2$) reaction, $F^- + \text{CH}_3\text{Cl} \rightarrow \text{CH}_3\text{F} + \text{Cl}^-$. We thus form CH$_3$F on a surface in a mixed multilayer of co-deposited CH$_3$Cl and NF$_3$ (Fig. 10). The Cl$^-$ ions can then be liberated/desorbed from the film and the synthesized molecular species CH$_3$F left on the surface. Thus DEA may lead to direct (and total) chemical transformation of the surface.

The role of DEA in ISM dust grain chemistry is yet to be quantified. Indeed, until 2006 it was not known if anions existed in the ISM. However, the possible existence of detectable abundances of anions in the ISM had been discussed for more than two decades, and even included in a chemical model of the envelope of IRC + 10216. In particular, Millar et al.24 predicted an abundance of C$_8$H$^-$ as large as a quarter of that of its neutral counterpart C$_8$H in the outer envelope of the C-star IRC +10216, a source known to be particularly rich in C-chain molecules. Recently, the first anion C$_8$H$^-$ anion was detected based on laboratory work.25 Subsequently, all linear carbon chain anions with large electron affinities: C$_8$H$^-$, C$_6$H$^-$, C$_4$H$^-$, C$_3$N$^-$, C$_2$N$^-$ and CN$^-$, have been identified in one or more sources in the Universe, including the dark cloud core TMC-1, the prestellar core L1544, the circumstellar shell of the AGB star IRC +10216, and the protostellar objects L1521F and L1527.

Since the binding energy of an electron to a neutral species, known as the electron affinity, is typically smaller in energy than a chemical bond, DEA is normally endothermic,26 e.g.,

$$\text{HCCCN} + e^- \rightarrow \text{CCCN}^- + \text{H}$$

In order for DEA to be exothermic and so occur at the low temperatures of the ISM, there must exist weak chemical bonds in the neutral precursor. Several such processes have been discussed in the astrophysical literature. Petrie27 realized that the formation of CN$^-$ could occur via the exothermic reaction

$$\text{MgNC} + e^- \rightarrow \text{CN}^- + \text{Mg}$$

from the neutral precursor MgNC, which has been detected in IRC +10216. Sakai et al.28 calculated that the anion C$_8$H$^-$ can be formed from C$_8$H$_2$:

Faraday Discuss. This journal is © The Royal Society of Chemistry 2014
C₆H₂ + e⁻ → C₆H⁻ + H,

a reaction that is exothermic by 16 kJ mol⁻¹. Herbst and Osamura²⁹ calculated that the corresponding reaction to form the anion, C₆H⁻, C₆H₂ + e⁻ → C₆H⁻ + H, is exothermic by 47 kJ mol⁻¹.

Electron induced anion formation processes are therefore now being included in the astrochemical models, and new data on the DEA of ISM molecular species are being assembled.³⁰,³¹ However, dipolar dissociation (DD), also known as ion pair formation, is another electron induced anion formation process and should also be included in astrochemical models:

e⁻ + AB → AB⁺ + e⁻ → A⁻ + B⁺ + e⁻.

To date this process has only been quantified for a very small number of hydrocarbons.³¹ Fig. 11 presents anion yields for acetylene as a function of electron energy. The inset shows the anion yield at low electron energies. The resonance peak position was determined by Gaussian fitting.

5. Conclusions

The commissioning of the ALMA array and the next generation of space telescopes (led by JWST) heralds the dawn of a new age of astronomy, in which the role of chemistry in the interstellar medium and in star and planet formation may be quantified. A vital part of these studies will be to determine the molecular complexity in these seemingly hostile regions and explore how molecules are synthesised and survive. The current hypothesis is that many of these species are formed within the ice mantles on interstellar dust grains, with irradiation by UV
light or cosmic rays stimulating chemical reactions leading to larger and more complex molecular species, including those that may be ‘prebiotic’ precursors. However, such irradiation releases many secondary electrons which may themselves induce chemistry. In this article we have discussed the potential role of such electron induced chemistry and illustrated, through some simple experiments, the rich molecular synthesis that electron irradiation of dust grain ice analogues may produce. It is necessary to further quantify the role of this electron chemistry, and determine whether photon and cosmic ray (ion) bombardment is better understood as chemistry induced by the secondary electrons produced from the primary (UV/ion) species during its ‘absorption’ in the ice mantle. Furthermore, the discovery that low energy (sub-ionisation energy) electrons can induce chemistry through the process of dissociative electron attachment needs to be reflected in astrochemistry models, particularly now that anions have been detected in space. The astrochemistry community therefore should also collaborate with the radiation chemistry community exploring DNA damage where, since the pioneering work of Sanche and co-workers in 2000, it has become apparent that electron induced damage may be the major mechanism for direct damage in cellular systems. The field of electron induced chemistry as an industrial tool for surface engineering is also developing rapidly, and once again the astrochemistry community can and should assimilate data from this community relevant to their research. In this year of the centenary of the Frank Hertz experiment, it is perhaps fitting to recognise the ubiquitous nature of electron collisions and how they influence the world (and universe) around us.

Acknowledgements

Much of the work presented in this article and support for the authors is derived from the European Community’s Seventh Framework Programme FP7/2007-2013 (LASSIE) under grant agreement 238258 and COST Action CM0805 The Chemical Cosmos, with national support from the UK STFC and institutional support from the Open University.

References