Herschel-PACS observation of gas lines from the disc around HD141569A

Thi, Wing-Fai; Pinte, Christophe; Pantin, Eric; Augereau, Jean-Charles; Meeus, Gwendolyn; Ménard, François; Martin-Zaïdi, Claire; Woitke, Peter; Rivière-Marichalar, Pablo; Kamp, Inga; Carmona, Andrés; Sandell, Goran; Eiroa, Carlos; Dent, William; Montesinos, Benjamin; Aresu, Giambattista; Meijerink, Rowin; Spaans, Marco; White, Glenn; Ardila, David; Lebreton, Jeremy; Mendigutía, Ignacio and Brittain, Sean (2013). Herschel-PACS observation of gas lines from the disc around HD141569A. In: Protostars and Planets VI, Heidelberg, p. 181.

For guidance on citations see FAQs.

© 2013 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:
http://www.mpia-hd.mpg.de/homes/ppvi/posters/2S021.html

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Herschel-PACS observation of gas lines from the disc around HD141569A

1 UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique (IPAG) UMR 5274, Grenoble, F-38041, France
e-mail: Wing-Fai.Thi at obs.ujf-grenoble.fr
2 CEA, Saclay, Fr
3 UAM, Spain
4 UMI-LFCA-CNRS/INSU, Chile
5 SUPA, University of St-Andrews, UK
6 Kapteyn Astronomical Institute, NL
7 SOFA-USRA, NASA, USA
8 ALMA, Chile
9 Open University, UK
10 RAL, UK
11 NASA Herschel Center, USA
12 Clemson University, USA

HD 141569A was observed by Herschel as part of the Gas in Protoplanetary Discs Survey (Dent et al. 2013). We complemented with ground-based observations to constrain the gas and dust in the disc.

Herschel-PACS GASPS programme: [OI] 63, 145 & [CII] lines detected

Model parameters

- B9.5V star, 5 Myrs, d=108pc
- Dust (disc) \(\sim 2.6 \times 10^{-4} \) M\(_{\odot}\)
- Gas (disc) \(\sim 2.5 \times 10^{-4} \) M\(_{\odot}\)
- PAH (disc) \(\sim 1.8 \times 10^{-12} \) M\(_{\odot}\)
- Inner disc: 5-110 AU
- Outer disc: 185-500 AU
- Gas mass/Dust mass \(\sim 100 \)

Disc continuum modelling with MCFOST

Fit to the SED + PAH features with MCFOST (Pinte et al. 2006)
- PAH + dust opacity treated simultaneously
- PAH treatment: Draine & Li

Gas chemistry and line transfer modelling with ProDiMo

[OI] 63, [OI] 145, [CII], and CO 3-2: flat gas-to-dust=100 disc models produce fluxes within a factor 2 except for [OI] 63.

Conclusions

- From the PAH image, the inner disc extends to at least 110 AU.
- All models with gas-to-dust mass ratio from 10 to 100 overpredict the [OI] 63 micron flux. The oxygen chemistry may need to be revised.
- A model with gas-to-dust mass ratio of 100 is consistent with all the other gas constraints.
- Disc models with low opening angles (H/r) are favored due to the sensitivity of the [CII] and CO 3-2 flux on the gas density (fit discs are denser).

Please contact me for more details. I am also looking for a tenure/tenure-track position.