Herschel-PACS observation of gas lines from the disc around HD141569A

W.-F. Thi1, C. Pinte1, E. Pantin2, J.C. Augereau1, G. Meeus3, F. Ménard4,5, C. Martin-Zaidi1, P. Woitke6, P. Riviere-Marichalar1, I. Kamp7, A. Carmona8, G. Sandell9, C. Eiroa1, W. Dent10, B. Montesinos1, G. Aresu11, R. Meijerink12, M. Spaans13, G. White1,12, D. Ardila11, J. Lebreton1, I. Mendigutia12, S. Brittain13

1 UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique (IPAG) UMR 5274, Grenoble, F-38041, France
e-mail: Wing-Fai.Thi at obs.ujf-grenoble.fr
2 CEA, Saclay, Fr; 3 UAM, Spain; 4 UMI-LFCA, CNRS/INSU, Chile; 5 SUPA, University of St-Andrews, UK; 6 Kapteyn Astronomical Institute, NL; 7 SOFA-USRA, NASA, USA; 8 ALMA, Chile; 9 Open University, UK; 10 RAL, UK; 11 NASA Herschel Center, USA; 12 Clemson University, USA

HD 141569A was observed by Herschel as part of the Gas in Protoplanetary Discs Survey (Dent et al. 2013). We complemented with ground-based observations to constrain the gas and dust in the disc.

Model parameters

- B9.5V star, 5 Myrs, d=108pc
- \(M_{\text{dust}}(\text{disc}) \approx 2.6 \times 10^{-6} M_{\odot} \)
- \(M_{\text{gas}}(\text{disc}) \approx 2.5 \times 10^{-4} M_{\odot} \)
- \(M_{\text{PAH}}(\text{disc}) \approx 1.8 \times 10^{-12} M_{\odot} \)

Density structure consistent with VISIR image at 8.6 micron

- Inner disc: 5-110 AU
- Outer disc: 185-500 AU
- Gas mass/Dust mass \(\approx 100 \)

Disc continuum modelling with MCFOST

- Fit to the SED + PAH features with MCFOST (Pinte et al. 2006)
- Gas + dust opacity treated simultaneously
- PAH treatment: Draine & Li

Disc continuum modelling with MCFOST

- PAH emission at 8.6 micron
- Surface density profile
- Observed PSF star
- Model-spectrum obtained with MCFOST (non-LTE PAH emission, \(C_{150}H_{30}\) circumcoronene)

Conclusions

- From the PAH image, the inner disc extents to at least 110 AU.
- All models with gas-to-dust mass ratio from 10 to 100 overpredict the [OI] 63 micron flux. The oxygen chemistry may need to be revised.
- A model with gas-to-dust mass ratio of 100 is consistent with all the other gas constraints.
- Disc models with low opening angles (H/r) are favored due to the sensitivity of the [CII] and CO 3-2 flux on the gas density (flat discs are denser).

Acknowledgment: E. van Dishoeck for discussion, European contract EU FP7-2011 Grant Agreement nr. 284405 (PERIGEN-CA-2009-23613), ANR contracts ANR-07-BLAN-0021, ANR-2010-CJ-0504-01, ANR CHEX2011 SEED, Millennium Science Initiative “Nucleus P10-023-F”, Spanish grant AYA 2011-26202. Calculations were done on Fostino funded by ANR.