The Open UniversitySkip to content
 

Potential multi-component structure of the debris disk around HIP 17439 revealed by Herschel/DUNES

Ertel, S.; Marshall, J. P.; Augereau, J.-C.; Krivov, A. V.; Löhne, T.; Eiroa, C.; Mora, A.; del Burgo, C.; Montesinos, B.; Bryden, G.; Danchi, W.; Kirchschlager, F.; Liseau, R.; Maldonado, J.; Pilbratt, G. L.; Schüppler, Ch.; Thébault, Ph.; White, G. J. and Wolf, S. (2014). Potential multi-component structure of the debris disk around HIP 17439 revealed by Herschel/DUNES. Astronomy & Astrophysics, 561, article no. A114.

Full text available as:
[img]
Preview
PDF (Accepted Manuscript) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (516kB) | Preview
URL: http://www.aanda.org/articles/aa/abs/2014/01/aa199...
DOI (Digital Object Identifier) Link: https://doi.org/10.1051/0004-6361/201219945
Google Scholar: Look up in Google Scholar

Abstract

Context. The dust observed in debris disks is produced through collisions of larger bodies left over from the planet/planetesimal formation process. Spatially resolving these disks permits to constrain their architecture and thus that of the underlying planetary/planetesimal system.

Aims. Our Herschel open time key program DUNES aims at detecting and characterizing debris disks around nearby, sun-like stars. In addition to the statistical analysis of the data, the detailed study of single objects through spatially resolving the disk and detailed modeling of the data is a main goal of the project.

Methods. We obtained the first observations spatially resolving the debris disk around the sun-like star HIP 17439 (HD 23484) using the instruments PACS and SPIRE on board the Herschel Space Observatory. Simultaneous multi-wavelength modeling of these data together with ancillary data from the literature is presented.

Results. A standard single component disk model fails to reproduce the major axis radial profiles at 70 μm, 100 μm, and 160 μm simultaneously. Moreover, the best-fit parameters derived from such a model suggest a very broad disk extending from few au up to few hundreds of au from the star with a nearly constant surface density which seems physically unlikely. However, the constraints from both the data and our limited theoretical investigation are not strong enough to completely rule out this model. An alternative, more plausible, and better fitting model of the system consists of two rings of dust at approx. 30 au and 90 au, respectively, while the constraints on the parameters of this model are weak due to its complexity and intrinsic degeneracies.

Conclusions. The disk is probably composed of at least two components with different spatial locations (but not necessarily detached), while a single, broad disk is possible, but less likely. The two spatially well-separated rings of dust in our best-fit model suggest the presence of at least one high mass planet or several low-mass planets clearing the region between the two rings from planetesimals and dust.

Item Type: Journal Item
Copyright Holders: 2014 ESO
ISSN: 1432-0746
Keywords: infrared stars; circumstellar matter
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 39853
Depositing User: G. J. White
Date Deposited: 03 Apr 2014 08:46
Last Modified: 08 Dec 2018 08:56
URI: http://oro.open.ac.uk/id/eprint/39853
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU