NUMERICAL SIMULATIONS OF THE POSSIBLE ATMOSPHERIC ORIGIN OF MARTIAN PERCHLORATE.

M. K. D. Duffy, S. R. Lewis, N. J. Mason, Department of Physical Sciences, The Open University, Milton Keynes, UK (m.k.d.duffy@open.ac.uk), F. Lefèvre, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Paris, France, F. Forget, Institut Pierre Simon Laplace Laboratoire de Météorologie Dynamique (LMD), Paris, France.

The first detection of perchlorate salts in the Martian regolith was made by NASA’s Phoenix Mars lander in the northern polar plains [1, 2]. Perchlorate salts are important as they can lead to the formation of brines [3], are a possible energy source for microbes [4] and can be used as a marker for climate change from wet to dry conditions [5, 6]. There is currently no known mechanism of perchlorate production on Mars though an atmospheric chemical pathway resulting in perchlorate has been proposed [6,4].

The pathway requires a source of gaseous chlorine. On Mars the most likely source of such a gas is gaseous hydrogen chloride (HCl) evolved from volcanic vents [7]. HCl has not yet been detected in the Martian atmosphere though several campaigns have attempted a detection [8, 9]. The observations have given an upper limit of HCl volume mixing ratio of 200 parts per trillion, however this is a disk averaged mixing ratio and so a larger mixing ratio can still be present in a transient event more characteristic of volcanism.

This study uses the UK version of the LMD MGCM, the model shares the same physical packages as the LMD MGCM [10, 11] but uses a spectral dynamical core and semi-lagrangian advection scheme [12, 13]. The LMD photolysis sub-model, developed by Lefèvre et al, 2004 [14, 15], has also been added to the UK model allowing the UK model to simulate important chemical pathways such as the formation and destruction of ozone. In addition to the existing photochemistry scheme five photolysis reactions and 46 gas-phase reactions representing the atmospheric chlorine chemical pathway for perchlorate production have been added.

Initial results using the new chemistry scheme can be seen in Figure 1 which shows the seasonal evolution of the zonally averaged ozone column density (μm-atm) for Mars Year 27 (MY27), firstly using the UK model with standard photochemistry and then for an identical simulation using a sub-set of the new chlorine scheme. The third plot shows the difference in μm-atm between the two plots and shows a clear decrease in the ozone column at the north pole during northern hemisphere winter when using chlorine chemistry. This is an interesting result as the addition of chlorine chemistry must be consistent with known observations of ozone and so an upper limit for the globally averaged mixing ratio of HCl can be estimated from our simulations and compared with those derived from the attempted observations of HCl.
References

Results from simulations using a range of values of initial mixing ratio of uniformly distributed HCl will be presented to ascertain the atmospheric lifetimes of the chlorine-bearing species, an upper limit of HCl mixing ratio consistent with ozone observations and the mass of HCl required for perchlorate production in the regolith. In addition, simulations of HCl outgassing to test the likelihood of observing transient outgassing events will be discussed.

Acknowledgements

MKDD and SRL would like to thank the Science & Technology Facilities Council and The Open University for funding this work.

References

REFERENCES

