The Open UniversitySkip to content

Morphological evidence for geologically young thaw of ice on Mars: a review of recent studies using high-resolution imaging data

Balme, Matthew; Gallagher, C. J. and Hauber, E. (2013). Morphological evidence for geologically young thaw of ice on Mars: a review of recent studies using high-resolution imaging data. Progress in Physical Geography, 37(3) pp. 289–324.

Full text available as:
PDF (Accepted Manuscript) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (23MB) | Preview
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Liquid water is generally only meta-stable on Mars today; it quickly freezes, evaporates or boils in the cold, dry, thin atmosphere (surface pressure is about 200 times lower than on Earth). Nevertheless, there is morphological evidence that surface water was extensive in more ancient times, including the Noachian Epoch (~4.1 Ga to ~3.7 Ga bp), when large lakes existed and river-like channel networks were incised, and early in the Hesperian Epoch (~3.7 Ga to ~2.9 Ga bp), when megafloods carved enormous channels and smaller fluvial networks developed in association with crater-lakes. However, by the Amazonian Epoch (~3.0 Ga to present), most surface morphogenesis associated with liquid water had ceased, with long periods of water sequestration as ice in the near-surface and polar regions. However, inferences from observations using imaging data with sub-metre pixel sizes indicate that periglacial landscapes, involving morphogenesis associated with ground-ice and/or surface-ice thaw and liquid flows, has been active within the last few million years. In this paper, three such landform assemblages are described: a high-latitude assemblage comprising features interpreted to be sorted clastic stripes, circles and polygons, non-sorted polygonally patterned ground, fluvial gullies, and solifluction lobes; a mid-latitude assemblage comprising gullies, patterned ground, debris-covered glaciers and hillslope stripes; and an equatorial assemblage of linked basins, patterned ground, possible pingos, and channel-and-scarp features interpreted to be retrogressive thaw-slumps. Hypotheses to explain these observations are explored, including recent climate change, and hydrated minerals in the regolith ‘thawing’ to form liquid brines at very low temperatures. The use of terrestrial analogue field sites is also discussed.

Item Type: Journal Item
Copyright Holders: 2013 The Authors
ISSN: 1477-0296
Keywords: geomorphology; Mars; Martian geomorphology; periglacial; permafrost; thaw
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 39551
Depositing User: Matthew Balme
Date Deposited: 20 Feb 2014 10:07
Last Modified: 07 Dec 2018 14:02
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU