Inhibitory effects of soluble fibronectin fractions on cultured neurones

Conference Item

How to cite:


For guidance on citations see FAQs

© [not recorded]
Version: [not recorded]

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Inhibitory effects of soluble fibronectin fractions on cultured neurones.

G.S. Djekovic, J.B. Phillips & R.A. Brown
University College London, Tissue Repair and Engineering Centre, Institute of Orthopaedics Campus, London, UK.

Fibronectin (Fn) is an extracellular matrix glycoprotein involved in development and repair by promoting cell adhesion and consequent migration. It has been used experimentally as a scaffold in engineered constructs to promote peripheral and central nervous system repair (1-5). Certain preparations of shear-aggregated Fn, however, inhibit neurite growth in vitro and in vivo as previously demonstrated by this group (unpublished). The inhibitory effect is lost once the material is washed suggesting that a soluble diffusing factor from within Fn, may be responsible.

The aim of this study was to further investigate this feature. Shear-aggregated fibronectin was soaked in culture media or phosphate buffer saline (PBS) for 48 hours in order to obtain Fn-conditioned media and Fn-conditioned PBS. The latter solution underwent affinity chromatography to isolate fractions according to their ability to bind immobilized heparin or gelatin. The effect of Fn-conditioned media and each individual fraction on neuronal growth from dorsal root ganglia was tested in vitro using a quantitative immunofluorescent assay. Our results show that when used as a whole Fn-conditioned media appears to inhibit neurite growth minimally as compared to the control (normal growth media). However, from the individual fractions, the heparin-binding fraction completely blocked neuronal growth.

Studying this effect could improve our understanding of neuronal extension over biomaterials and offers a potential agent to incorporate into devices to reduce neurone formation following repair/implantation.