Title: Subaqueous basaltic magmatic explosions trigger phreatomagmatism: a case study from Askja, Iceland

Abstract: Sequences of basaltic pillow lavas that transition upwards with systematic gradation from pillow fragment breccias to fluidal bomb-bearing breccia to bomb-bearing lapilli tuffs are common at Askja volcano, Iceland. Based on the detailed textural investigation of three of these sequences, we argue that they record temporally continuous transition from effusive to explosive products that were erupted from and deposited at or near a single subaqueous vent. The recognition of such sequences is important as they provide evidence for controls on the onset of explosive activity in subaqueous environments. Such investigations are complicated by the interplay of magmatic gas expansion, phreatomagmatic and mechanical granulation fragmentation mechanisms in the subaqueous eruptive environment.

All of the sequences studied at Askja have textural, componentry and sedimentological characteristics suggestive of a close genetic and spatial relationship between the pillow lavas and all of the overlying glassy clastic deposits. The identification of magma fragmentation signatures in pyroclasts was accomplished through detailed textural studies of pyroclasts within the full range of grain sizes of a given deposit i.e. bomb/blocks, lapilli and fine ash. These textural characteristics were compared and evaluated as discriminators of fragmentation in pyroclastic deposits. The presence of angular vitric clasts within the breccia and lapilli tuff displaying fragile glassy projections indicates little or no post-depositional textural modification. A shift in vesicle and clast textures between the pillow lavas and the large concentration of fluidal bombs in the breccia indicate that the phreatomagmatic explosions were initially triggered by magmatic vesiculation. The initial magmatic gas expansion may have been triggered by depressurization caused by the drainage of the ice-confined lake surrounding Askja. The Fuel Coolant Interactions (FCI) of the more efficient phreatomagmatic explosion was enabled by the increase in the surface area to volume ratio of the fluidal bombs in the water, producing a premix of magma and water. The onset and increasing influence of phreatomagmatic fragmentation is preserved in the presence of very fine blocky ash particles and diminished presence of larger particles such as fluidal bombs. The textural, sedimentological and environmental characteristics of these deposits suggest that phreatomagmatic explosions can be triggered by initial magmatic gas expansion, but that it is likely one of many mechanisms for triggering such explosions.
June 24, 2013

Journal of Volcanology and Geothermal Research

Revisions

Dear Dr. Wilson-

Enclosed is my revision of my submission to JVGR. I have attempted to address the issues/comments made by the reviewers throughout the manuscript. Comments regarding the revisions occur in the ‘revision notes’ portion of the revised submission. In general these adjustments removed redundancies and therefore shortened the manuscript length.

Please note that I completed this work at the University at Pittsburgh, but my current location is the University at Buffalo. I would like the affiliations in the ms to reflect this.

Thank you for the timely and thoughtful reviews of this manuscript. If there are any questions please feel free to contact me.

Scincerely,

Alison Graettinger

Center for Geohazard Studies

University at Buffalo

Buffalo, NY 14260

agraettinger@gmail.com
Reviewer 1

The reviewer’s comments about repetition in the manuscript, particularly in sections 3-4 have been addressed through some reorganization and deletion of repetitive phrasing. Section three now addresses the specific lithologies first and then addresses the dimensions and variables of the individual deposits. This removes the need for the ‘overview’ section.

The changes noted in the ‘Revision, changes marked’ manuscript focus on rewording or major reorganization and does not have all minor grammatical corrections or formatting changes included (i.e. changing table numbers).

The Abstract has been shortened by removing unnecessary detail and a comment referencing the summary of the large table was included.

Consequently, the ms is now roughly 600 words and 3 tables shorter.

Table 2 was removed due to repetition with information in figure 7.

Table 4 was removed because of repetition from text and Figure 7.

Table 5 was removed and paraphrased in text (lines 896-901).

Figure 6: Field images of clast types were included with the schematics to highlight the different morphologies.

Figure 7: Additional notation was included to indicate the percentage type in the figure and the caption was rewritten to address each grain size dataset included in the figure.

Figure 8: Brightness and contrast were adjusted on field images of fluidal bombs to help highlight the clast shape. If this is insufficient annotation of the image may further resolve this issue. The missing labels have been restored.

Table 3 (now 2) was expanded to include a Limu section. And the additional suggested references were included.

Specific comments from the annotated PDF: All comments were addressed to some degree. In particular all grammatical suggestions were incorporated.

The volatile data analysis referenced in the paper is sourced from Cameron unpublished data. This is noted in the text (section 3.0), and later references to this data set reference back to the section which describes it.
Points of ‘careful wording’ were revised as suggested i.e. magmatic volatiles and external water were used exclusively instead of previous more confusing terms (section 4).

Reviewer 2

Sample numbers were added to SEM analyses for the purpose of highlighting uncertainty. Line 335-336.

All references to percent were annotated with appropriate vol. or wt. or abundance. Measurements based on 2D and 3D analysis were clarified.
Highlights

1) Textural investigation of subaqueous basaltic effusion to explosion transition.
2) Example of subaqueous magmatic explosions triggering phreatomagmatism.
3) Evaluation of textures for identifying basaltic fragmentation mechanisms.
Subaqueous basaltic magmatic explosions trigger phreatomagmatism: a case study from Askja, Iceland

Alison H. Graettinger¹, Ian Skilling², Dave McGarvie³, Ármann Höskuldsson⁴

¹Alison H. Graettinger (corresponding author)
University of Pittsburgh, 200 SRCC, Pittsburgh PA, 15260
*Currently:
University at Buffalo, Center for Geohazard Studies, 411 Cooke Hall, Buffalo, NY 14260
Telephone: +17166454286
agraettinger@gmail.com

²Ian P. Skilling
University of South Wales, Pontypridd, RCT, CF37 4BD, UK
Telephone: +44 1443 654151
ipskilling@gmail.com

³Dave W. McGarvie
The Open University in Scotland, 10 Drumsheugh Gardens, Edinburgh, EH3 7QJ, UK
Telephone: +44 (0) 131 226 3851
Dave.mcgarvie@open.ac.uk

⁴Ármann Höskuldsson
The University of Iceland, Askja, Sturlagata 7, 101 Reykjavik, Iceland
Telephone +354-5254215
armh@hi.is
Abstract

Sequences of basaltic pillow lavas that transition upwards with systematic gradation from pillow fragment breccias to fluidal bomb-bearing breccia to bomb-bearing lapilli tuffs are common at Askja volcano, Iceland. Based on the detailed textural investigation of three of these sequences, we argue that they record temporally continuous transition from effusive to explosive products that were erupted from and deposited at or near a single subaqueous vent. The recognition of such sequences is important as they provide evidence for controls on the onset of explosive activity in subaqueous environments. Such investigations are complicated by the interplay of magmatic gas expansion, phreatomagmatic and mechanical granulation fragmentation mechanisms in the subaqueous eruptive environment.

All of the sequences studied at Askja have textural, componentry and sedimentological characteristics suggestive of a close genetic and spatial relationship between the pillow lavas and all of the overlying glassy clastic deposits. The identification of magma fragmentation signatures in pyroclasts was accomplished through detailed textural studies of pyroclasts within the full range of grain sizes of a given deposit i.e. bomb/blocks, lapilli and fine ash. These textural characteristics were compared and evaluated as discriminators of fragmentation in pyroclastic deposits. The presence of angular vitric clasts within the breccia and lapilli tuff displaying fragile glassy projections indicates little or no post-depositional textural modification. A shift in vesicle and clast textures between the pillow lavas and the large concentration of fluidal bombs in the breccia indicate that the phreatomagmatic explosions were initially triggered by magmatic vesiculation. The initial magmatic gas expansion may have been triggered by depressurization caused by the drainage of the ice-confined lake surrounding Askja.
(FCI) of the more efficient phreatomagmatic explosion was enabled by the increase in the surface area to volume ratio of the fluidal bombs in the water, producing a premix of magma and water. The onset and increasing influence of phreatomagmatic fragmentation is preserved in the presence of very fine blocky ash particles and diminished presence of larger particles such as fluidal bombs. The textural, sedimentological and environmental characteristics of these deposits suggest that phreatomagmatic explosions can be triggered by initial magmatic gas expansion, but that it is likely one of many mechanisms for triggering such explosions.

Keywords: magma fragmentation; phreatomagmatic explosions; basalt; subaqueous eruption

1.0 Introduction

The question of what controls the transition of basaltic effusive to explosive activity in water-rich environments, has been a matter of debate over the last 20 years (Houghton and Nairn 1991; Houghton and Schmincke 1989; Mastin et al. 2004; White 1996; Wohletz 1986; Wohletz 2002; Wohletz 2003; Zimanowski et al. 1997; Zimanowski et al. 2003). The answer to this question has important implications for modeling volcanic hazards, such as the potential for explosions or the grain size distribution, height and duration of ash plumes in wet environments. Submarine exploration technology has advanced our ability to describe subaqueous explosive volcanic deposits from the submarine environment (Clague et al. 2003; Clague and Davis 2003; Clague et al. 2009; Eissen et al. 2003). However, the study of explosively generated deposits formed in an ice-confined (glaciovolcanic) environment offers much more accessible deposits that are commonly well preserved in three-dimensions. We argue that such centers preserve sequences that record in situ transitions from effusive to explosive activity at a single vent. The detailed
textural and stratigraphic study of such sequences offers the best opportunity for understanding the onset of explosive activity and the interplay of fragmentation mechanisms in natural subaqueous settings.

The focus of this study is three ca. 30 m thick, glass-rich, incipiently palagonitized basaltic pyroclastic deposits that directly overlie pillow lavas from Askja volcano, Iceland (Fig. 1). All three clastic sequences are massive but display a systematic and continuous fining upward from pillow-fragment breccia to fluidly-shaped bomb-bearing breccia and then into vitric lapilli tuff. Ostensibly similar sequences of pillow lavas overlain by breccias, containing pillow fragments, capped by vitric lapilli tuffs, have been described from many areas, including ophiolite sequences (Carlisle 1963), Archean basalt provinces (Dimroth et al. 1978), ocean island settings (Fujibayashi and Sakai 2003) and several glaciovolcanic sequences (Jones 1970; Skilling 2009; Werner and Schmincke 1999). Such sequences could clearly be derived through many processes. Common interpretations for these sequences can be divided into those where the clastic deposits are (1) erupted from a different vent than that which produced the lavas, (2) were produced by the same vent that produced the lavas but not as part of a temporally continuous eruption, (3) or were erupted from the same vent as lavas and were part of a continuous eruption. Mechanisms that produce unrelated sequences of pillow lavas and clastic deposits include deposition of density currents from nearby vents or post-emplacement collapse of deposits on top of the pillows. Similar sequences produced from the same vent without continuous eruption include flow related collapse (autoclastic breccias), intrusion of pillowed dikes into clastic deposits, or explosive activity instigated under already solidified lava. Based on a detailed textural analysis of the sequences from the Austurfjöll massif of Askja, we argue that the
deposits were produced from the same vent over a brief eruption that transitioned from effusive activity to magmatic explosive, and then to phreatomagmatic explosive eruptive activity.

The interpretation of such clastic deposits relies heavily on the distinction of the influence of different fragmentation mechanisms in the formation of subaqueous basaltic pyroclasts along the contact between facies within the transitional sequences. Evidence for the mechanisms of fragmentation, transportation and deposition are preserved in the textures of subaqueous pyroclasts over the full range of grain sizes, including bombs, lapilli and fine ash, though most research has focused on fine ash textures (Büttner et al. 1999; De Rosa 1999; Dellino et al. 2001; Dellino and Liotino 2002; Durig et al. 2012; Ersoy et al. 2006; Heiken 1971; Mattox and Mangan 1997). These textural data can then be used to make inferences on the controls of the onset of subaqueous explosive activity and specifically phreatomagmatic activity.

In this study we present data on textural characteristics of fine ash to block-sized clasts that could be used to help distinguish phreatomagmatic from magmatic fragmentation, and argue that the phreatomagmatic eruptions in our study area were generated following an initial mingling (premixing) of magma and water driven by magmatic fragmentation. It is not clear how important or common initial mingling by magmatic fragmentation might be in basaltic phreatomagmatic sequences elsewhere, and is likely only one mechanism for instigating such eruptions. The uniquely dynamic nature of the ice-confined lakes may play a role in the initiation of magmatic gas expansion through depressurization caused by lake drainage. Nevertheless, similar textural investigations may be used to identify the mechanisms during the onset of explosivity in other basaltic phreatomagmatic systems.

1.1 Eruption setting
Basaltic glaciovolcanic systems under thick ice (>400 m) typically evolve into ice-confined lacustrine centers (Allen et al. 1982; Gudmundsson 2003; Gudmundsson et al. 1997; Werner and Schmincke 1999). Within the ice-confined lake the water level may change rapidly and repeatedly through time (Bjornsson 2002; Gudmundsson et al. 1997; Höskuldsson et al. 2006; Smellie et al. 2008). Simplified models of such centers include initial subaqueously emplaced effusive products, dominated by pillowed lavas, followed by a shift towards more explosive activity with deposition of glassy fragmental deposits (Allen 1980; Jones 1970; Moore et al. 1995; Werner et al. 1996). Within this model it is assumed that there is a decreasing fragmentation and dispersal of subaqueous eruptions as confining pressure or water depth increases, particularly above 400 m (Allen 1980; Clague et al. 2003; Zimanowski and Büttner 2003). However, investigations of submarine basaltic deposits are revealing the presence of explosively derived deposits at depths up to 3 km (Clague and Davis 2003; Fujibayashi and Sakai 2003; Helo et al. 2011; Portner et al. 2010; Schipper and White 2010; Schipper et al. 2010; Schipper et al. 2011; Sohn et al. 2008; Wohletz 2003). This uncertainty over the importance of controls other than confining pressure (Mastin et al. 2009; Schipper et al. 2011; White 1996) on the triggering of subaqueous explosions emphasizes the importance for detailed studies of natural deposits that may record the onset of basaltic explosions in water.

1.2 Field area

Askja is one of the largest and best-exposed formerly ice-confined volcanoes on Earth. Most research to date has been on its Holocene (ice-free) evolution. It comprises a complex of basaltic glaciovolcanic massifs that are dominated by pillow lavas and subaqueously emplaced vitric lapilli tuff deposits. These massifs are cut by at least three calderas and surrounded by Holocene
subaerial lava flows (Fig. 1). The greatest volume of glaciovolcanic deposits at Askja is the eastern mountain massif, Austurfjöll, which is truncated by the two youngest calderas. Austurfjöll has been described briefly by Brown et al. (1991), Sigvaldason, (1968 and 2002) and more recently in detail by Graettinger et al. (2012).

Austurfjöll is incised on its eastern side by large gullies that extend up to 3 km into the massif. The vertical exposure within the gullies is between 10 and 100 m. These exposures are dominated by pillow lava sheets, lava breccias and vitric lapilli tuff. Three of these gullies contain well-exposed sequences that display gradual transitions up section between effusive pillow lavas at their base, to an upward fining pillow fragment and bomb-bearing breccia and vitric lapilli tuff sequence. The sequences have lateral continuity of tens of meters and can be traced in multiple directions. The three gullies from north to south are named, Drekagil, Nautagil and Rosagil (Fig. 1).

2.0 Methods

This study is based on field work conducted over two seasons at Austurfjöll. The three sequences of basaltic pillow lava, pillow-fragment breccia, fluidal bomb-bearing breccia and vitric lapilli tuffs were identified in 2010 and revisited in 2011 for more detailed sampling and study. Samples were collected from the top of the basal pillow units, the lowermost breccia at the contact with the pillow lavas and then progressively up through the section of overlying breccias and vitric lapilli tuffs, with an average sample interval of two meters. At each location a sample of matrix (lapilli and any ash present) and an outsized clast was collected. Outsized clasts are defined here as the largest clasts that exceed the visually estimated median grain size at a particular stratigraphic level. Measurements were taken of the average clast size and the outsized
clasts. Measurements were limited to the longest axis of the largest outsized clasts with intact glassy chill rinds around their entire margins. Field measurements of vesicularity percentages of the core and glassy rim of outsized clasts were supported by measurements of field photographs. A minimum of five measurements of such clasts were taken at each site. If a secondary size mode of outsized clast was present, the largest clasts representative of both modes were studied.

A binocular microscope with mounted digital camera was used to estimate the vesicularity percentage of partially disaggregated matrix and clasts. Additional observations of vesicle shape, distribution, alignment and coalescence were recorded. These observations were also used to estimate the mean matrix grain sizes. The partial consolidation, high friability and fragile clast morphologies precluded full granulometric analyses. Digital images of thin sections were also used to quantify 2D vesicularity percentages and dimensions using ImageJ software. Vesicle number density (Nv) was calculated based on methods outlined in Shea et al. (2010). In addition to vesicle textures, the presence of microlites and rare phenocrysts, tachylite, sideromelane and mixed tachylite-sideromelane fragments were documented across matrix and clast samples. Values represent 2D volume percent of each parameter calculated from image analysis.

Detailed logging of sedimentary structures and X-ray fluorescence (XRF) analyses of outsized clasts and pillows were completed for each sequence to investigate the genetic relationships between the facies of the sequence. XRF bulk rock major element analyses were conducted at Washington State University GeoAnalytical lab from pillow lavas, fluidal bombs in the breccia and outsized clasts in the lapilli tuff.

Textural analysis, using secondary electron images collected on a JEOL JSM-5900 at Dickinson College, of the fine ash fraction included study of grain mounts of loose grains, coated
in carbon. Samples were sieved to isolate particles <50 μm to target potential ‘active’ particles (<130 μm) of fuel coolant interaction (FCI) experiments (Büttner, 2002). Textures described include ash morphology (blocky and equant, chips and blades, or spines and needles), conchoidal fracture, the presence of intact or broken vesicles, abrasion features (scalloped edges), coatings and adhering particles. Textures were recorded in a per grain basis, so percentages represent the abundance of a given texture, not volumetric presence of vesicles within the ash particles.

3.0 Overview of lithofacies

All three sequences are exposed in steep walled gullies incised into the base of the eastern margin of the 750 m high Austurfjöll massif of Askja volcano (Fig.1). The sequences have basal pillow lavas overlain by pillow-fragment and fluidal bomb-bearing breccias and capped by vitric lapilli tuffs. Fluidal bombs also occur within the lapilli tuff sequences, but decrease in abundance up section. The transition from breccia to lapilli tuff is defined as the point where the fluidal bomb presence is less than 30 vol.% of the deposit. The clastic deposits range from 15-35 m in thickness and display gradational transitions between each lithofacies. Geomorphologic evidence, particularly the thickness of subaqueous sequences at Austurfjöll (700 m), and volatile saturation pressure data indicate the eruption of the basal lavas occurred in water ca. 700 m deep, or beneath some combination of water, ice and sediment with a confining pressure of ca. 7.7 MPa (Cameron, B. unpublished data). There is no structural or textural evidence that these three sequences include subaerially emplaced deposits.

Pillow lava flows at Askja can be subdivided into two main lithofacies, named Pl1 and Pl2. The distinction between the two lithofacies is the variability in the dimensions of the pillow tubes and the frequency of transitions into non-pillowed lavas. Pl1 lavas are comprised of highly
regular tubes, both in shape and cross-sectional dimension with average diameters of 50 cm and a range of <20 cm in diameter per within a pillow lava sheet. PL2 lavas contain a much greater diversity of pillow dimensions, with cross-sectional diameters ranging from 50–200 cm. They also commonly display transitions to columnar, curvi-columnar and blocky-jointed subaqueously emplaced lava flows without pillow forms. PL2 lavas also have more distended pillow shapes and display less regular stacking (Fig. 5). Pillows measured in the basal lava of the three transitional sequences and apparently intact pillows in the lowermost pillow breccia, fall within observed range of the massif, where cross-sectional diameters are typically 60 cm and core vesicularities around 50 vol.%. Their internal variability and common occurrence of transitions to non-pillowed lavas means that the basal lavas of all three sequences described here are classed as PL2 facies.

In all three sequences the breccia that immediately overlies the pillow lavas is initially entirely clast-supported, composed of apparently intact pillows and pillow fragments, with decreasing occurrence of obvious pillow forms (intact or otherwise) within 1-2 meters of the contact. Clasts in the breccia become progressively more isolated in the vitric lapilli matrix (30-70 vol.% of the breccia) up section and pillow fragments are replaced by fluidal bombs within one meter of the pillow lava to breccia contact.

Pillows are distinguished by their regular, ellipsoidal cross-sectional shape and occasional presence of keels. Typical pillows exhibit vesicle bands and pipe vesicles (Fig. 6). Pillows typically have regular glassy rinds between 0.1 and 1.5 cm thick. Vesicles are typically round and undeformed in the vesicle bands that dominate the outer few cm of the pillow. Pillow cores may display coalesced vesicle morphologies and radial pipe vesicles are common at the core and rim of the pillow (Edwards et al. 2009; Fujibayashi and Sakai 2003; Höskuldsson et al.
2006). Pillow fragments display partial glassy quench rinds, interrupted vesicle bands, pipe vesicles and incomplete pillow forms. Fluidal bombs on the other hand display a wider range of cross-sectional morphologies, with convolute clast shapes and an irregular distribution of irregular vesicles. When not intact, bombs display a jigsaw fit fracture pattern. The average fluidal bomb vesicularity is on the order of 25% but can be as much as 60%. Fluidal bombs have glassy rinds between 0.1 and 2 cm in diameter. Vesicles are also typically coalesced and polylobate, with an abundance of elongate vesicles parallel to the glassy rim. Radial pipe vesicles are absent. The distribution of vesicles within the bombs is irregular. Vesicle morphology within the bombs displays an increase in coalescence up section (Fig. 7). The breccia matrix comprises coarse, glassy and angular vitric lapilli (0.5-2 cm). All the vitric clasts within the breccias and lapilli tuffs except fluidal bombs are highly angular with fragile shapes.

The vitric lapilli tuff makes up the bulk of the sequences. The change from breccia into lapilli tuff is characterized by a gradual decrease in the abundance of fluidal bombs with height in all three sequences, from 30 vol.% in the top of the breccia unit to 5 vol.% at the top of lapilli tuff (Fig. 2-4). Weak sub-parallel bedding develops only in the upper 3 m of the lapilli tuff in two of the sequences, NG and RG. The diameter of the bombs peaks in the lower portion of the lapilli tuff, frequently within 5-10 m of the facies transition (Fig. 7) and then decreases rapidly up section. Lapilli are 1-3 cm are dominantly equant and angular, but may have partial fluidal margins and display no systematic change in size up section. Vesicles in the vitric lapilli display a wide range of morphologies that include isolated ellipsoidal to irregularly shaped vesicles, high degrees of interconnectedness, and the presence of tube vesicle morphologies (Fig. 8). Lapilli vesicularity is internally consistent between 20-40% depending on the sequence. The microlite content of bombs increases up-section from 2% up to nearly 10%. The microlite content of lapilli
however, peaks in the breccia, and remains low in the lapilli tuff <10%. Clasts greater than 2 cm have sideromelane rims that can reach up to 1 cm thick and microlite-bearing tachylite cores. Fragments below 2 cm in diameter are dominated by sideromelane. Consequently, the overall ratio of sideromelane to tachylite in the deposit increases up-section. Ash and lapilli are typically very angular with delicate spines and margins preserved (Fig. 8). The clasts display no rounding or removal of fragile spines from fine ash and the deposits exhibit no traction current structures, slump structures or other evidence of remobilization or lateral transport. While palagonitized deposits are common within Austurfjöll, the deposits described here have very limited and impersistent occurrence of palagonite.

The bulk rock chemistry for the sequences of the basal pillows, fluidal bombs of the breccia and lapilli tuff and lapilli clasts were analyzed for major and trace element abundances. The deposits are all tholeiitic basalts with limited internal variability between clast types in given sequence as highlighted in Table 1.

Fourteen fine ash samples were selected for SEM micro-textural analysis from the uppermost breccias and through the overlying lapilli tuff unit of the Drekgil and Nautagil localities. Between 100 and 180 grains <50 microns were counted for each sample and values are reported as abundance of grains with a target texture. Individual particles may display multiple textures. Less than 25% of the fine ash particles had any obvious vesicles (Fig. 9). Of the vesicles present, only about 3% had clast margins dominated by the presence of a vesicle (where the vesicle influences the shape of 40% or greater of the margin. The bulk of vesicles observed at this scale were small, round and isolated within significantly larger grains and dissected by planar or obviously stepped conchoidal fracture surfaces. Vesicle sizes recorded in the fine ash were mostly between 5 and 100 microns in diameter. A significant portion of fine ash grain
shapes (35-40%) were chips (one small dimension, two equal dimensions), blade (one small, one long dimension), or needle-like (two small and one long dimension) (Fig. 9). Approximately 45% of fine ash grains were blocky and roughly equant or prismatic in shape (all dimensions are similar; Fig. 9A). The fine ash samples also include minor occurrences of tube vesicle rich clasts (<10 %) and limu o Pele (<5 %). Limu o Pele are thin (μm to mm) curved lenses of sideromelane glass (Fig. 9D). These curved sheets of glass are significantly thinner than the chips described above. The curvature of the limu o Pele suggests they were derived from vesicles with a diameter greater than the typical vesicles preserved (>60 μm) at this grain size. There are no crystals in the fine ash component of any of the sequences.

Fine ash particles with sharp edges showed evidence of minor abrasion, including rounding and scalloping (Fig. 9H), on less than 10% of all fine ash grains studied. In contrast convolute and fragile shapes, including thin spines of glass (Fig. 9A,D,E), were present on an average of 12% of the fine ash grains. The fine ash fraction of the NG and DG sections displays some minor discoloration from a grey brown to yellow brown, commonly associated with palagonatization. Other evidence for chemical alteration of the fine ash fraction includes pitting of fracture surfaces and flakey coatings. Adhering finer particles are common on 50% of the fine ash grains, but rarely obscure the complete grain. Some particles have thin (micron) skins or coatings that are cracked and flaking away from the grain.

3.1 Individual sequences

The three sequences studied occur within deep gullies called Drekagil, Nautagil and Rosagil (Fig. 1). The sequence in Drekagil (DG) is exposed in a near vertical cliff within a 50 m deep
east-west trending gully. Laterally, the sequence overlies a sharp erosional contact of the top of a
sequence of well-bedded lapilli and ash tuffs that display significant palaeotopography on their
upper surface (Fig. 2). The pillow lavas occur as a thick (30 m) valley-filling pillow lava sheet
that abuts and overtops a paleo-cliff of ash and lapilli tuff. Due to the steep nature of the modern
gully, sampling of the pillow unit was limited to the margins of the lensoid unit. The
corresponding stratigraphic log follows a diagonal path from the margin of the transitional
sequence to its center to access the lapilli tuff directly overlying the greatest thickness of the
pillow unit (Fig. 2). The pillow unit is well exposed in the vertical wall, directly below the lapilli
tuff. The breccia that overlies the pillow lavas is ca. 5 m thick and initially clast supported with
intact and fragmented pillow clasts preserved in the basal 1 m. The clasts are replaced by fluidal
bombs with increasing lapilli matrix presence (transitioning from 30–70 vol.% of the breccia) in
the upper 4 m. The lapilli tuff has a thickness of 14 m with fluidal bombs throughout. Maximum
bomb sizes are 50 cm, but are predominantly between 20–30 cm in the lapilli tuff. The sequence
is capped by a convolute bedded ash that is overlain by a feldspar-phyric non-pillowed sheet
lava. The contact between the lapilli tuff and the ash tuff is sharp, but there is no evidence of
significant erosion. The sequence at Drekagil is the only one of the three studied that contains
accidental lithics in the lapilli tuff, namely subangular porphyritic tholeiite lava lapilli (<5 cm in
diameter), which comprise <1 vol.% of the deposit and are too infrequent to have any obvious
trend in occurrence.

Nautagil (NG) contains the thickest of the sequences (35 meters) where it forms the entire
southern wall of the gully (Fig. 3). The thickness of the basal pillow lava unit is uncertain as the
pillows are partially covered by unconsolidated deposits of pumice from the 1875 eruption of
Askja and local talus, but the pillow lavas are at least 2 m thick. The overlying breccia is 7 m
thick with pillow fragments dominating the lowest 2 m giving way to fluidal bombs and increasing (up to 60 vol.%) lapilli matrix the upper 5 m. This breccia is overlain by 24 meters of lapilli tuff. In the upper 3 m of the lapilli tuff a weak parallel ca. 10° bedding dipping to the northeast (away from Austurfjöll) develops. Laterally, the deposit displays some palagonitization, but typically displays only incipient palagonitization along the sampled southern wall of the valley. This sequence is cut by a basaltic dike that is one of the type examples of coherent margined volcaniclastic dikes (CMVDs) described from Askja and interpreted as having formed by dike emplacement into ice-cemented volcaniclastic sediments (Graettinger et al. 2012).

The exposure in Rosagil (RG) makes up a large portion of the southern wall of the gully, with a total thickness of 16 m. The basal pillow lava exposure is limited due to talus, but has a minimum thickness of 2 m (Fig. 4). The breccia is 4 m thick with pillow fragments dominating the lower 1 m and fluidal bombs occurring in the upper 3 m. The breccia is overlain by ten meters of lapilli tuff. A weak parallel and shallow (10° dipping northeast, away from the summit of Austurfjöll) stratification develops in the upper meter of the tuff. The upper 1 m of the deposit is also locally more intensely palagonitized than the rest of the deposit. Laterally (2-5 away from sampling area) this sequence is intruded by pillowed intrusions with meter-wide peperitic margins.

4.0 Interpretation of deposits

Sequences of pillow lava, to pillow fragment and fluidal bomb breccias, to lapilli tuff sequences are not uncommon in subaqueous basaltic sequences (Carlisle 1963; Dimroth et al. 1978; Fujibayashi and Sakai 2003; Jones 1970; Skilling 2009; Werner and Schmincke 1999). Their
gross similarities between these pillow lava, breccia, and tuff sequences belie the range of mechanisms that can produce outwardly similar deposits. The following discussion will use detailed stratigraphic and textural studies of the facies present at Askja to identify the eruptive history of these deposits.

The structure and components of the Austurfjöll sequences are indicative of a wholly subaqueous environment, including pillowed lavas, sideromelane dominate clastic deposits and the absence of bomb sags, oxidation, or other emergent textures. The morphology of the massif and dominance of subaqueous deposits up to 700 m above the local base and volatile analyses (see section 3.0) from pillow glass rinds indicate that the depth of water was likely on the order of 750 m. The sequences of pillowed lavas, to pillow fragment and fluidal bomb breccia to fluidal bomb-bearing lapilli tuff show consistent internal bulk rock geochemistry suggestive of a co-genetic origin for the pillows and clastic components of the deposits (Table 1). The vesicle morphology of the lapilli is highly similar to that of the fluidal bombs supporting the related genesis of the pyroclasts.

The dominant feature of the three sequences is the massive nature of the lithofacies associated with a progressive upward fining from pillow breccia, through fluidal bomb breccia, to lapilli tuff. The lapilli show fairly consistent dimensions throughout the sequence. The transitions between the facies are gradational and show no sedimentary structures indicative of hiatuses in the eruption.

The gradational upward fining, associated poor sorting and random clast orientation of these sequences is likely the result of high sediment fallout rates possibly from direct deposition from subaqueous convective plumes (Maicher et al. 2000). Grading of outsized clasts may result from Stokes settling of larger particles before smaller particles; however, the lack of sorting
present in the lapilli and ash sized particles, and initial increase in bomb size, does not support this mechanism for bomb distribution in these deposits. A weak parallel bedding is present only in the upper few meters of two of the three deposits. This bedding may be due to time gaps in deposition or delayed gravitational settling in the water column of the finer deposits in this case lapilli and fine ash late in the eruption. Loading structures, traction currents, slump structures and other structures suggesting lateral transport of the deposit are not present (Maicher et al. 2000; White 2000). The apparent lack of remobilization is also supported by the lack of alteration of sharp grain edges (Solgevik et al. 2007) and the preservation of fragile glassy spines and limu o Pele (Fig. 9A,D,E) that would be easily damaged if mobilized in any granular flow or slump (Sohn 1995). The massive nature and systematic grading of coarser clasts through the deposit supports continuous deposition of pyroclasts. This observation, the presence of significant bombs and the limited lateral extent of the deposits suggest that they are vent proximal.

If the deposits are interpreted as primary and vent proximal, it would imply that the sequence represents the inverse of what was expelled from the vent, suggesting that the eruption initially produced large and abundant blocks and bombs, that progressively decreased in size and abundance through the eruption, until a lapilli dominated deposit of consistent grain-size was formed. Based on the lack of remobilization, co-genetic origin and structureless nature of the deposits we interpret the sequences to represent in situ temporally continuous eruptions from a single vent that display a transition from effusive to explosive basaltic activity.

The identification of fragmentation mechanisms in subaqueous pyroclasts remains a challenging task, dependent on the presence of multiple collaborating pieces of evidence. Previous pyroclastic studies have put emphasis on VND and fine ash textures (Ersoy et al. 2006; Lautze et al. 2012; Murtagh et al. 2011; Shea et al. 2010), but these features are not consistent
indicators of fragmentation (Mattsson 2010; Ross and White 2012). The basaltic pyroclastic
textures useful for such studies are summarized in Table 2 and evaluated for the relative strength
of different textural parameter historic uses.

4.1 Pillow lava

Pillow lava sheets of both Pl1 and Pl2 type are the dominant morphology of subaqueous lavas at
Askja. The relationship between subaqueous lava flow morphology and effusion rate is
established based on three major groups with pillow lavas representing the lowest effusion rate,
lobate pillow-free lavas an intermediate effusion rate and sheet flows (highest effusion
rate)(Gregg and Fink 1995; Gregg and Smith 2003; Griffiths and Fink 1992). Lava flow
morphology can also be a factor of slope angle (Gregg and Fink 1995; Gregg and Keszthelyi
2004), but as the large pillow sheet flows at Askja occur on shallow slopes, except where they
abut paleotopography, slope effects can be ignored here. Pl1 lavas, that display regular pillow
forms and stacking, are interpreted as the lowest effusion rate end-member of subaqueous lava
flows. Pl2 lavas have a more complex internal structure and locally display textures of lobate
subaqueous lava flows, including blocky and columnar jointing domains mingled with large
irregular pillow lava tubes. These structures suggest that Pl2 lavas represent an intermediate step
between low effusion rate pillow lavas and moderate effusion rate lobate flows (Bear and Cas
2007; Dimroth et al. 1978; Griffiths and Fink 1992; Walker 1992). All three sequences described
here have these higher effusion rate pillowed lavas at their base.

4.2 Pillow fragments and fluidal bombs
The breccias that immediately overlie the pillow lavas are dominated by three main types of block-sized components: isolated intact pillow forms, pillow fragments and fluidal bombs. Pillows can become isolated or appear to be isolated in clastic matrix through an influx of fragmental material during effusion without significant interaction with the lava (Carlisle 1963; Dimroth et al. 1978; Schipper et al. 2011), intrusion of pillowed dikes through fragmental deposits (Carlisle 1963; Edwards et al. 2009; Gorny et al. 2012), by gravitational detachment and deposition away from the main lava flow (Bevins and Roach 1979; Dimroth et al. 1978; Gorny et al. 2012; Moore 1975), or as ballistic blocks into clastic deposits (Staudigel and Schmincke 1984). Well incised exposures, like at Askja, are useful to determine if pillow clasts are truly isolated, or if they can be traced to an intrusion or pillow lava tube. In the Askja deposits, intact isolated pillows are the least common block-sized component, and while intrusions are present, sampling was preferentially collected away from exposed intrusions. Consequently, at Austurfjöll apparently intact pillows in the breccias are interpreted as isolated clasts.

Angular pillow fragments can be formed through gravitational collapse of an advancing flow (Jones 1970; Moore 1975), or any other brittle break-up of partially or fully cooled pillow lavas such as slumping (Cas et al. 2003; Jones 1970) or through explosive disruption of an existing flow (Smellie and Hole 1997). Differentiation of these processes requires detailed investigation of the clast morphologies and three dimensional exposures of the deposit structure. The breccia clasts at Askja were described in detail and are dominated by apparently intact pillows, and within a few meters, fluidal bombs. Angular pillow fragments do occur along the contact with the pillow lavas, but are notably rare higher in the clastic sequences.

The deposits described here have significant lateral continuity and do not display any bedding, including slump structures, nor do they display any transitions into competent lava.
flows. Flow-generated “autoclastic” breccias are frequently observed within large pillow sheets at the Askja complex, but they occur as lenses between multiple lava flows and have both lateral and vertical gradational contacts with coherent pillowed lavas with a dominance of angular pillow fragment clasts. The Austurfjöll deposits however, contain an abundance of fragile glass features, including glassy rinds, complex fluidal shapes, spines on fine ash and the lack of sedimentary structures indicating lateral transport, all of which suggest that they are not reworked. Additionally, if the deposit experienced collapse or transport a greater proportion of angular blocks would be expected rather than the dominance of fluidal bombs with intact rinds as observed at Askja. The componentry, fragile grain edges, and structureless upward fining of the transitional sequences of DG, NG and RG are suggestive of an explosive origin for the breccia with high rates of settling through a water column.

Fluidal bombs display convolute shapes reflecting ductile fragmentation of liquid magma (Houghton and Gonnermann 2008; Houghton and Nairn 1991; Houghton and Schmincke 1989; Walker and Croasdale 1971). Similar clasts have been described in submarine sequences, where they have been misnamed “pillows” (Portner et al. 2010; Staudigel and Schmincke 1984) but have also been recognized as juvenile fluidal bombs in some sequences (Cole et al. 2001; Simpson and McPhie 2001; Sorrentino et al. 2011; Staudigel and Schmincke 1984). The fluidal bombs from Austurfjöll share significant similarities in morphology, vesicularity and coalescence of vesicles to the examples attributed to subaqueous fire fountaining (Cas et al. 2003; Simpson and McPhie 2001; Staudigel and Schmincke 1984). Bombs in subaerial Strombolian and Hawaiian and Surtseyan deposits can have fluidal shapes including fusiform, ribbon, or cow-pie morphologies that all result from the ductile disruption of liquid magma (Houghton and Gonnermann 2008; Houghton and Schmincke 1989; Murtagh et al. 2011;
Fluidal shapes in subaerial environments are most commonly associated with fire fountaining (Cas et al. 2003; Houghton and Gonnermann 2008; Houghton and Schmincke 1989). The fluidal bombs at Austurfjöll are distinct from the angular blocks that are common in Surtseyan sequences (Brown et al. 1994; Sohn 1995; Sorrentino et al. 2011), which are derived from solidified lava, e.g. from cooled lava flows, larger fragmented bombs, vent walls, or intrusions. Unlike typical Surtseyan eruption deposits, fluidal bombs dominate the breccias and lower lapilli tuff of the Askja sequences and angular bombs (pillow fragments) are limited to absent. Juvenile bombs are also frequently subordinate in abundance to such accidental lithics in Surtseyan eruption deposits (Murtagh et al. 2011; Sohn 1995; Walker and Croasdale 1971). Descriptions of bombs are notably absent in numerous characterizations of deep submarine explosive eruptions, which may in part be due to sampling logistics (Clague et al. 2003; Clague and Davis 2003). However, the presence of these fluidal bombs, and the observation of fluidal ejecta in FCI experiments (Büttner et al. 2002; Grunewald et al. 2007; Ross and White 2012; Zimanowski et al. 1997), have not yet been incorporated into models of fragmentation. Consequently, the fluidal bombs within the Austurfjöll sequences are interpreted as juvenile products of subaqueous explosive magmatic fragmentation, based on their initial abundance, morphology, intact glass rinds and distinctive vesicle pattern from the pillow lavas at the base of the sequence.

Subaerial Strombolian and Hawaiian bombs typically display a range of vesicularity of 30-60 and 60-90 vol.% respectively (Brown et al. 1994; Houghton and Schmincke 1989). These values are higher than what is observed at Askja (20-60 vol.%) or typical Surtseyan eruptions (5-40 vol.%)(Brown et al. 1994; Cas et al. 2003; Head and Wilson 2003; Murtagh et al. 2011; Sorrentino et al. 2011). Head and Wilson (2003) suggest that the vesicularity required for deep
subaqueous explosive eruptions is 75%, but values are commonly reported significantly lower at mid-ocean ridges (Clague and Davis 2003). The boundaries between eruptions that are described as “Surtseyan” and “Strombolian” are fuzzy and both behaviors have been described within a single eruption (Houghton and Gonnermann 2008; Houghton and Nairn 1991; Houghton and Schmincke 1989). Similarly, the recognition of bombs or clasts generated in wetter versus drier environments can be difficult without contrasting textures revealing interaction with air (oxidization) vs. water (thick glassy rinds) within the same deposit (Brown et al. 1994; Sorrentino et al. 2011) and indeed the presence or absence of water in the environment does not automatically dictate the fragmentation style (Table 2). Bomb vesicularity is frequently one of the few characteristics used to differentiate between subaerial and phreatomagmatic eruption deposits, where typical Surtseyan bombs have lower average vesicularities than typical Strombolian bombs (Houghton and Gonnermann 2008). Fluidal bombs from Askja have low vesicularites (20-60%), thick glassy rinds (0.2-1.5 cm) and no apparent oxidization showing the greatest similarity to Surtseyan bombs, but having irregular vesicle distributions and polylobate shapes typical of Strombolian subaerial bombs. The frequent presence of the bombs indicates a low efficiency of fragmentation relative to that of phreatomagmatic explosions low in the sequence.

4.3 Lapilli and coarse ash

Lapilli dominate the bulk of the deposit from the matrix of the breccia to the top of the lapilli tuff. The dominant lapilli size range is from 1 to 3 cm with vesicle morphologies and shapes similar to vesicles found in the fluidal bombs. The bulk of lapilli are equant in size and serve as matrix for the larger blocks and bombs in the upper breccia and lapilli tuff. The lapilli are
interpreted as the products of the breakup of larger globules of melt (like fluidal bombs) and the
disruption of melt directly at the vent. Fragmentation of the lapilli reflects a combination of
magmatic degassing, quench granulation and brittle fragmentation from interaction with other
particles or the conduit during transport and deposition. The low percentage of microlites and
dominance of sideromelane glass are indicative of rapid cooling of smaller juvenile fragments,
suggesting that there is greater primary fragmentation influencing lapilli formation.

4.4 Fine Ash

Fine ash first occurs within the sequences in the lapilli tuffs and progressively increases in
abundance up section. In order to use fine ash textures to infer primary fragmentation
mechanisms, it must be assumed that they are the result of molten magma break up, not post-
explosive mechanical fragmentation (Mattox and Mangan 1997) an assumption supported by
their very fine and blocky nature and preserved fragile textures. The fine ash component of the
DG and NG tuffs are dominated by chips, blades and needle shapes that are associated with
mechanical granulation in experimental magma-water interactions (Büttner et al. 1999) (Fig. 9).
Particles with these textural signatures of quench fragmentation are abundant (up to 40%) in the
fine ash fraction of the breccia and lapilli sequences. Evidence of the entrapment of external
water within the melt, is preserved in the presence of a small percentage (5%) of limu o Pele,
representing local ductile deformation in the formation of a large bubble wall fragment (Maicher
et al. 2000; Schipper et al. 2013; Schipper and White 2010; Schipper et al. 2011).

Blocky, equant fine ash grains with stepped features and an absence of significant vesicle
influence are frequently called ‘active particles’ (<130 microns) of FCI (Büttner et al. 2002;
Wohletz 2003; Zimanowski and Wohletz 2000). Blocky textures can also be produced in non-
explosive interactions with water and wet sediment, but the resulting grain size are coarse ash to fine lapilli (Mastin et al. 2009; Schipper et al. 2011). These particles are all the product of rapid thermal transfer from the particles to a coolant, resulting in the brittle fragmentation of the magma.

Blocky/equant fine ash particles make up on average 45% of the fine ash fraction of the Austurfjöll sequences. Lapilli within the breccias and tuffs of the sequence between 2-20 mm also display blocky equant shapes, but have vesicularities up to 25 vol.% and crystal contents up to 10 vol.%, whereas the blocky fine ash fraction are crystal free. The fine ash particles that do contain vesicles were counted separately and display a much lower presence of vesicles in general and notably fewer fracture surfaces that are clearly influenced by vesicle walls than similarly sized particles from a purely magmatic eruption (Houghton and Gonnermann 2008). As a result of the particle size investigated the vesicles preserved in the fine ash are much smaller than were preserved in the lapilli and fluidal bombs. It is nevertheless important to acknowledge the similarity in morphology of the fine ash particles with coarser grain fractions in the sequences at Askja as well as with those in non-explosive thermal granulation experiments.

Scalloped edges, characterized by small ~1-2 micron curved gashes along the margins of grains (Fig. 9H) and rounding of fine ash particles are indicative of physical alteration of fine ash particles (Solgevik et al. 2007), but were only found on 10% of fine ash grains studied at Austurfjöll. Fragile shapes, including thin spines of glass, were present on an average 12% of the fine ash grains, such delicate features would be difficult to preserve in the event of any remobilization of the deposit. Flakey coatings probably indicate minor alteration post-fragmentation along with the orange discoloration of fine ash these indicate weak hydration, incipient palagonatization, of the deposits (Büttner et al. 2002; Büttner et al. 1999; Harpel et al.
Fine ash particles are a critical grain size for unraveling the fragmentation mechanisms of the eruptions as they represent the most efficient fragmentation and require the greatest energy to produce. The size of these grains means that they only preserve the last stage of fragmentation, as interacting fragmentation mechanisms may destroy much of the earlier evidence of less efficient fragmentation mechanisms. Such particles are also limited as they do not make up more than 10% of the total deposit volume at any stratigraphic level. The finest grains must be studied in the context of detailed analysis of the whole deposit including larger pyroclasts, eruption, transport and depositional processes and their environments.

Mechanisms of magma fragmentation clearly impart textural characteristics to glass particles at all scales. Vesicle size, shape and alignment and interconnectedness reflect magmatic volatile exsolution, fragmentation and quenching with implications for the relative timing of all of these processes (Murtagh et al. 2011; Stovall et al. 2011). Quench rind thickness, sideromelane vs. tachylite ratios and microlite presence indicate the relative rate of cooling (Schipper et al. 2011). However, the signatures of initial fragmentation can be altered by subsequent fragmentation and shape modification during transport, deposition and chemical alteration. The final deposition of subaqueous volcaniclastic material is commonly the result of lateral transport mechanisms such as density currents (Maicher et al. 2000; Smellie and Hole 1997; White 2000), the collapse of over-steepened deposits (Jones 1970; Sohn 1995), or suspension settling (Eissen et al. 2003; Maicher et al. 2000). Remobilization can cause additional fragmentation and/or impart textures such as the chipping of edges or rounding through abrasion (Solgevik et al. 2007), muting or destroying textural signatures of initial fragmentation. The introduction of accidental clasts during transport also complicates interpretations. Recycling of clasts has been noted as a common process in subaerial and emergent/near surface
phreatomagmatic eruptions, but has not been discussed much in the subaqueous literature (Houghton and Smith 1993; Rosseel et al. 2006). Although numerous textures have been used to distinguish magmatic from phreatomagmatic eruption products no one texture can be used in isolation (Table 2). A full interpretation of the textures displayed by glassy pyroclasts should include magma state prior to fragmentation, fragmentation, eruption mechanism(s), transport, deposition, environment and any subsequent post-depositional changes (Harpel et al. 2008).

4.5 Vesicle textures as a record of fragmentation mechanism

Vesicles textures are the product of a combination at least six processes: nucleation, diffusive growth, decompressive expansion, coalescence, collapse, deformation and escape (Schipper et al. 2010). The overall vesicularity of the deposits described here (25-60 vol.%) is comparable to subaqueous to emergent (i.e. phreatomagmatic) basaltic deposits (10-60 vol.%) (Houghton and Gonnermann 2008; Houghton and Schmincke 1989; Murtagh et al. 2011; Schipper et al. 2011; Simpson and McPhie 2001). The dominance of coalescence and vesicle growth in the lapilli and fluidal bombs is suggestive of decoupled gas within the magma (Schipper et al. 2011), rather than continuous nucleation and exsolution.

The differences observed in vesicularity between the three grain size groups (ash, lapilli and blocks/bombs) are clearly influenced by the size of vesicles that can be observed, and the method of calculating vesicularity. The vesicularity of bombs and lapilli were calculated both in the field and with image analysis using ImageJ, both methods are two dimensional. These values are assumed to be of representative of three dimensional distributions. The vesicularity of fine ash was not calculated as a vesicle percent, but rather a binary value of presence of vesicles in part due to the small size and low abundance of vesicles at this grain size. Vesicle textures can be
described as young (pre-fragmentation) textures or mature (post-fragmentation) textures. Young
textures are small, sub-spherical and abundant vesicles. Rim to core vesicle coarsening is a sign
of post-fragmentation vesiculation in subaerial and subaqueous bombs (Moitra et al. 2013;
Parcheta et al. 2013; Schipper et al. 2011; Stovall et al. 2011). This mature texture results from a
residence time of the melt in a shallow chamber or the conduit for gases to exsolve and be
distributed through the melt (Schipper et al. 2011). In the case of mature textures in pillow lavas,
the distribution of large coalesced vesicles is typical found at the center of the pillow, away from
rapidly cooling and apparently young vesicle textured rims.

The overall distribution of the vesicles in fluidal bombs indicates that they are not post-
fragmentation bubble textures, or at least the process of coalescence had commenced prior to
fragmentation as they are well distributed throughout the bombs. Smaller vesicles are also
present, but a consistent alignment or distribution is absent, and thus no evidence of continued
nucleation of vesicles after bomb formation. Stretched vesicles along the bomb margins may be
ellipsoidal in morphology and represent deformation of pre-fragmentation vesicles during and
after bomb formation. Vesicle textures in pillows and fluidal bombs can be compared to reveal
the relative timing of vesicle coalescence to fragmentation. The pillows are early stage eruption
products with rounded vesicles (pre-fragmentation) and including radial pipe vesicles and an
inward coarsening of vesicle diameter (post-fragmentation), which are also preserved in pillow
fragments.

Lapilli vesicle morphology and distribution is nearly identical to that of the fluidal bombs
suggesting the vesicles of both grain sizes have the same pre-fragmentation origin. In very fine
ash, those vesicles observed isolated within a particle and smaller than the fracture planes formed
prior to fragmentation. The <50 μm size of fine ash particles studied precludes the preservation
of vesicles larger than 100 μm. Those vesicles that are present, however, are indicative of pre-
fragmentation vesiculation.

The similarity of vesicle coalescence and other textures between bomb and lapilli clasts
suggests that similar processes were controlling vesicle formation in the breccia and lapilli tuff.
However, a comparison of initial pillow lava vesicle textures with fluidal bombs and lapilli
suggests a change in the behavior of magmatic gasses during the eruption. The vesicles in the
bombs display increased coalescence relative to the uppermost pillow lava flows and minor (~5-
10%) increase in vesicularity, indicating an increase in gas exsolution within the melt, and
suggest that the bombs were formed by explosive magmatic gas expansion (Fig. 7). The fluidal
morphology of the bombs also indicates ductile deformation during transport through the vent
and the overlying water column, which is in agreement with a magmatic, rather than
phreatomagmatic origin for the generation of the bombs. While fluidal bombs are observed in
some phreatomagmatic deposits, they do not occur with the concentration observed at Askja or
other subaqueous magmatic settings (Simpson and McPhie 2001). However, the more complex
textures of the lapilli and ash indicate multiple fragmentation mechanisms were contributing to
the formation of these finer particles including FCI and mechanical granulation (Fig.7).

5.0 Magma fragmentation at the onset of basaltic phreatomagmatic explosions

The kinetic disruption of a magma is accomplished in two main ways: ductile deformation of the
melt and brittle deformation of the cooling glass/lava. Ductile, or inertial fragmentation, is the
breakup of magma during decompression in the form of inertial stretching and breakup of the
liquid magma (Houghton and Gonnermann, 2008; and references within). Basaltic magmatic
explosions predominantly involve the ductile disruption of the melt through the nucleation and

Vesicle morphologies and distributions are distinct in the pillow lavas and pillow lava fragments, relative to the later pyroclasts (fluidal bombs and lapilli), and suggest coalescence of magmatic gas bubbles prior to the formation of the pyroclasts but not during pillow extrusion. This accumulation of magmatic gas could lead to the initial formation of fluidal bombs and possibly some lapilli, generated by expansion of these bubbles (Fig. 7 & 8). There is, however, limited evidence of ductile deformation preserved in the fine ash scale in the form of tube vesicles and rare fine ash with large vesicle walls preserved along fractures. This supports the evidence that magmatic gas expansion is recorded in the large polylobate vesicles representing existing degassing pathways, and not nucleation of new vesicles.

While it is reasonable to indicate the onset of magmatic gas expansion driven explosivity in these deposits it is exceedingly difficult to identify when, if at all, the magmatic gas expansion stops. Rather, the fragmentation mechanism that dominates pyroclast formation changes, and may then mask the signature of magmatic fragmentation. The polylobate highly coalesced vesicles of are also present in the lapilli tuff, but the influence of magmatic fragmentation becomes less evident with the rapid decrease in fluidal bombs within a meter or so of the top of the breccia, suggesting a more effective fragmentation mechanism.

Brittle fragmentation of magma occurs when the material fails as a solid. In order for liquid magma to deform in a brittle fashion the strain rate must be high enough to prevent liquid
relaxation of the melt (Büttner et al. 2002; Büttner et al. 1999; Dellino et al. 2001; Zimanowski et al. 2003). Fragmentation of basaltic magma by brittle processes include: FCI, quench granulation and other mechanical fracture through impact upon landing or transportation (Maicher et al. 2000). Most studies that distinguish between phreatomagmatic and magmatic fragmentation focus on the fine ash grain size fraction (<64 μm) as it records the most efficient fragmentation mechanism involved in the creation of the deposit, i.e. the mechanism that requires the greatest energy (Büttner et al. 1999; Dellino and La Vope 1996; Durig et al. 2012; Heiken 1971; Mattsson and Tripoli 2011; Zimanowski et al. 2003). Phreatomagmatic explosions driven by FCI occur where vapor is produced through the rapid heating of the water interacting with the surface of the melt. This vapor film must be disrupted to bring the melt in direct contact with the water. The disruption of the vapor film can be an internal or external process, where changes in the system, including other mechanisms of melt fragmentation, can initiate FCI explosions. (Kokelaar 1986; Schipper et al. 2013; Wohletz 1986; Wohletz 2003; Zimanowski and Büttner 2003; Zimanowski and Wohletz 2000). The resulting explosion can then create pressure variations and fragment country rock or cooling crusts and result in the exposure of fresh magma to the system. The violence of these interactions produces deposits that are characterized by lithic blocks and abundant fine ash. Disruption of melt by FCI shockwaves can result in the rapid depressurization of a degassing melt and encourage magmatic explosivity. Similarly magmatic explosions can engender the formation of a fuel coolant premix and enable a phreatomagmatic interaction. The dynamic interplay of pressure, heat and coolant can result in a feedback loop where one or both of these fragmentation mechanisms may engender the conditions required to trigger the other. Simultaneously, both of these mechanisms result in the exposure of new melt which subsequently cools and contracts resulting in quench granulation.
This complex interplay of magma fragmentation mechanisms only highlights the challenge of interpreting sequences like those at Austurfjöll.

Quench granulation is due to contraction during cooling and the brittle failure of the outer contracted layers of melt that is accentuated in wet environments (Cas et al. 2003; Schipper et al. 2010; Wohletz 1986; Wohletz 2003). This secondary fracture occurs at a variety of scales including jig-saw fit bombs, angular blocks and chip and needle-shaped fine ash particles. Lapilli that have incomplete sideromelane rims reflect the brittle fragmentation of cooled melt. Particles associated with this type of fragmentation are typically dominated by wholly sideromelane clasts. Quench granulation only releases 10% of the thermal energy available (Schmid et al. 2010) and creates larger particles (coarse ash and lapilli) than FCI. Additional fragmentation can occur through clast to clast interaction, impact with the ground and during transportation. The preservation of large fluidal clasts and intact glassy margins on lapilli and bombs indicate that these secondary fragmentation mechanisms, including post-depositional transport, are limited. Fine ash grain textures also support this lack of transportation through the preservation of fragile spines and limited grain abrasion.

The role of ductile deformation in FCI explosions is poorly understood. Ductilely deformed clasts are observed in limited quantities in phreatomagmatic deposits, including limu o Pele (Clague et al. 2009; Maicher et al. 2000; Schipper and White 2010) and fluidal bombs (Mattsson and Tripoli 2011; Ross et al. 2011). The formation of limu o Pele involves the ductile deformation of melt as a result of trapping external water within the melt. The trapped water rapidly expands as vapor stretching the melt into a thin film (bubble wall), in a processes documented in littoral, submarine and subglacial environments (Clague et al. 2009; Maicher et al. 2000; Schipper and White 2010). Limu o Pele are not a dominant feature within the Askja
deposits (never more than 4 vol %), but are frequent enough (Fig. 9) to indicate that trapping of
external water by molten magma did occur in this fully subaqueous environment, further
indicating the complexity of subaqueous melt water interactions.

It is very important to note that none of these fragmentation processes occur in isolation,
as each individual mechanism disrupts the magma and may enable the decompression of internal
volatiles, increase the surface area for interaction with external water and disrupt insulating
vapor films (Maicher et al. 2000) triggering other mechanisms of fragmentation enabling
feedback loops between magmatic and phreatomagmatic explosions. Quench granulation, in
particular, can occur in any wet eruptive environment and contributes to all subaqueous eruptions
(Cas et al. 2003; Mastin et al. 2009; Schipper et al. 2010; Wohletz 1986; Wohletz 2003).

The interpretation of pillow, fluidal bomb, lapilli and fine ash particle textures from the
three transitional sequences at Askja clearly reflect a complex interplay of several fragmentation
mechanisms that evolve throughout the eruption sequence. The shape of clasts and fine particles
reflect the ductile or brittle nature of these mechanisms. The interrelated nature of mechanisms
of fragmentation results in the modification, overprinting and even destruction of earlier textural
signatures of the fragmentation (Ersoy et al. 2006). It is therefore, critical to use multiple
parameters, such as sedimentary structures, vesicularity, grain size and grain shape at multiple
grain sizes to reconstruct the mechanisms of fragmentation for pyroclastic deposits generated in
wet environments. For the sequences described here, we suggest that the evolution of the
fragmentation mechanisms producing the deposits started with initial magmatic fragmentation in
a subaqueous environment which then enabled more efficient FCI explosions. This progressive
shift does not imply that magmatic fragmentation was shut down by the onset of
phreatomagmatic activity, rather the more effective process rapidly dominated the production of
pyroclasts with magmatic gas expansion becoming a subordinate process. At the same time fragmentation by mechanical process (dominantly quench granulation) and the entrapment of external water (limu o Pele) accompanied the more dominant fragmentation mechanisms (Fig. 10).

5.1 What triggers explosive activity in subaqueous eruptions?

Potential triggers for a transition from effusive to explosive activity in a subaqueous environment include: depressurization by a decrease in confining pressure, access/infiltration of water to the rising magma, and internal dynamics of the magma due to changes in the magma flux, volatile content or crystallization. In a glaciovolcanic setting a reduction of confining pressure can result from a decrease in the overburden, such as water or ice or wet sediment due to the dynamic nature of the environment. Ice-confined lake water levels are highly dynamic and can drain slowly or rapidly during and after an eruption (Bjornsson 1985; Höskuldsson et al. 2006; Skilling et al. 2009; Smellie 2001; Smellie and Hole 1997). Decompression would also occur as a result of increasing the elevation of a vent relative to the water level through the construction of a massif (Edwards et al. 2009; Moore and Calk 1991; Zimanowski and Büttner 2003). A sudden collapse of the growing massif or collapse of the vent itself could also result in rapid decompression over the vent area (Fujibayashi and Sakai 2003; Scott et al. 2003; Wohletz 2003).

The initiation of external water-magma interaction may further instigate decompression and facilitate further explosive activity (White 1996; Wohletz 1986; Wohletz 2002). This may be accomplished through the trapping of external water under an advancing flow over wet sediments, or between pillows, or the infiltration of water into the vent, or fractured lava flow crusts (Brown et al. 1994; Clague et al. 2009; Eissen et al. 2003; Maicher et al. 2000; Schipper...
and White 2010; White 1996; Zimanowski and Büttner 2002). In the case of the completely subaqueous sequence at Askja, ample volumes of water are available for interaction with erupting magma indicating that the volume of water was not a limiting variable for triggering the explosions. The presence of effusive pillow lavas during the early phase of the eruption indicates that melt was interacting with abundant water, but conditions were not conducive for melt/water pre-mix generation and FCI explosions (Wohletz 2002; Zimanowski et al. 1997). The pillow fragment breccia indicates that the pillow lava was partially mechanically disrupted, likely through the onset of explosive magmatic activity which formed juvenile fluidal bombs that then progressively dominate the breccia up-section. Vesicle morphologies and their distribution in the fluidal bombs points to an increase in magmatic volatile expansion and accumulation of vesicles through coalescence after pillow formation and during bomb formation. During the initial explosive phase lapilli were also produced in small quantities to form the matrix of the breccia. As the eruption continued lapilli became the dominant pyroclast size, producing a massive lapilli tuff. This upward fining of the deposit, as expressed by the increase in ash presence and decrease in outsized clasts and the accompanying increasing abundance of very fine blocky ash particles indicates that conditions became more favorable for FCI explosions. The initial magmatic fragmentation enabled the dynamic mingling of magma and water to enable FCI and increased quench granulation. The threshold between passive and explosive fragmentation in these cases is loosely constrained by laboratory scale experiments defining a range of the greatest potential for explosive interaction, where the mass ratios of coolant to magma is between $1>R>0.1$ (Wohletz 2002). However, this mass ratio does not occur in isolation and the other variables, including confining pressure, and magma viscosity have not been sufficiently investigated. In this case the increased surface area to volume ratio of the 20-50 cm bombs needed to occur with sufficient
volume to maintain a mass ratio of water to magma below 1. Based on the 4-7 m of fluidal bomb-bearing breccia it seems feasible that the ratio of heat to coolant in the resulting mix was favorable to trigger a FCI explosion. This then suggest that explosive magmatic fragmentation can facilitate explosive fuel coolant interactions that dominate pyroclast formation for the remainder of the eruption. While not the only mechanism to instigate FCI explosions, this may represent a common mechanism for FCI initiation. If this model is valid, one important question still remains, namely what controlled the initial increase in magmatic gas expansion for the Austurfjöll eruptions?

Variations of internal eruption dynamics could initiate magmatic explosive activity through an increase in eruption rate (Clague et al. 2009; Fujibayashi and Sakai 2003), changes in volatile content, or viscosity (composition or crystallization) (Fowler et al. 2002; Wohletz 2003). The abundance of crystals within a melt will also directly affect the gross vesicularity and play a role in the potential explosivity of a melt (Houghton and Gonnermann 2008).

The presence of textures reflecting magmatic gas expansion and coalescence in the Austurfjöll deposits indicates that internal volatiles play a critical role in the first stages of fragmentation, and thus it is reasonable to consider internal drivers for the initiation of explosivity, such as eruption rate. The presence of pillow lavas of Pl2 type at the base of the Austurfjöll sequences indicates that effusion occurred at a higher rate than would form typical (i.e. Pl1) pillow lava forms. Deformed sideromelane glass quenched particles and elongated vesicles on clast rims in the overlying breccias/lapilli tuffs suggest a high strain rate that is also associated with a high eruption rate (Parcheta et al. 2013). This may suggest that the onset of explosivity coincided with an increased eruption rate from pillowed lavas to magmatic gas driven jetting of magma globules into the water column. Other internal factors such as melt
viscosity and volatile saturation pressures do not seem to change dramatically between the pillows and the bombs. The crystal content of the lapilli and bomb samples is below 10 vol.%. This suggests that the formation of crystals is not a significant contributor behavior of the melt. Additionally the chemistry of the pillows and clastic samples shows a high degree of internal consistency.

Alternatively, the shift in eruptive behavior may have been due to factors external to the melt where the increase in internal volatile expansion and coalescence between the pillow lavas and the fluidal bombs could have been the result of decompression from a reduction of confining pressure over the vent. Investigations of glaciovolcanic deposits have sought geologic textures that preserve the evidence of rapid syn-eruptive decompression through environmental changes, and suggest that dramatic changes in bulk vesicularity may be a key to identifying this process (Höskuldsson et al. 2006). The first fluidal bombs at Austurfjöll have different morphology and distribution of vesicles from the underlying lavas, reflecting an increase in vesicle coalescence, not an increase in nucleation as might be expected during a decompression event. However, there is geologic evidence within nearby areas of Austurfjöll massif for voluminous drainage of water, as indicated by deeply eroded channels in similar lapilli tuffs that are infilled with stream flow and debris flow deposits. Such a large drainage event may have rapidly decreased the lake level volume, resulting in a rapid pressure change over the massif. The timing and duration of such an event is not well constrained, but at least one drainage event is stratigraphically correlated within the same eruptive unit as the NG transitional sequence (Graettinger unpublished data). Large ice sheets like would have been present at Askja are less susceptible to rapid drainage events than thinner, more localized ice bodies; however, the volume of water drained may not need to be
significant to influence eruptive conditions of an actively degassing magma, particularly if the
eruption rate was already high as evidenced by the presence of Pl2 lavas.

The internal compositional and textural consistency of the sequences at Askja suggests
that there was little change in melt properties during the eruption of these deposits. While a
change in mass flux at the vent may be responsible for the onset of magmatic gas decompression
at all three sites, in similar fashions, it seems more likely that environmental conditions would
produce such similar processes at different vents. Drainage events are frequent at glaciovolcanic
centers (Bennett et al. 2006; Carrivick et al. 2004; Gudmundsson et al. 1997; Höskuldsson et al.
2006), and are a likely the strongest candidate to trigger the onset of explosive activity at an
actively effusing vent.

5.2 Eruption Style

The discussion of eruption mechanics in fully subaqueous environments is complicated by the
terminology, particularly with regard to comparisons that are often made with subaerial eruption
styles. Comparisons with Strombolian (Clague and Davis 2003; Clague et al. 2009; Deardorff et
al. 2011; Head and Wilson 2003; Schipper et al. 2011) and Hawaiian (Cas et al. 2003; Head and
Wilson 2003; Schipper et al. 2010), eruption styles typically are focused on the decoupled or
coupled nature of magmatic gas, but belies the underlying complexity of subaqueous
fragmentation. Deep (ca. 1 km), gas-coupled submarine eruptions have also recently been given
the term Poseidic (Schipper et al. 2010) to highlight some of the variations present in subaqueous
eruptions. Surtseyan eruptions are considered to be the ‘wet’ equivalent of Strombolian
eruptions, but the term is predominantly applied to emergent or limited water environments, not
fully subaqueous systems (Brand and Clarke 2009; Skilling 2009; Sohn 1995; Sorrentino et al. 2011; White and Ross 2011).

Fluidal bombs have been used to suggest the occurrence of submarine basaltic fire fountaining at ocean islands (Simpson and McPhie 2001), but the nature of vesicles in the Austurfjöll deposits is more suggestive of decoupled gas, that is characteristic of Strombolian eruptions (Clague and Davis 2003; Clague et al. 2009; Polacci et al. 2008; Schipper et al. 2011; Schipper et al. 2010). The vesicularity of Hawaiian eruption deposits is typically high, and pyroclasts are dominated by ragged clasts with uniformly distributed vesicles, suggested that the gas bubbles are coupled to the magma during eruption and a more continuous eruption. Strombolian eruptions of basaltic magma have a variety of fluidal and ragged clasts are that are produced in a non-continuous ‘unsteady’ eruption, but occur as discrete eruptions, due to the decoupled gas (Houghton and Gonnermann 2008). Surtseyan eruptions can display discrete bursts and continuous uprush behavior. The Askja deposits lack some of the more distinctive Surtseyan deposit characteristics including lithic blocks, bomb sags and stratigraphy indicative of pulsatory behavior. The sequences at Austurfjöll are predominantly massive with a gradual upward fining and weak bedding only in the upper meters of the larger deposits. This indicates a more continuous eruptive behavior resulting in continuous deposition.

The erosional history and complex overlapping facies of adjacent fissure eruptions at Askja make the identification of exact vent locations for each sequence very difficult. Without sufficient exposure vent position is estimated to be roughly located within the deposit itself, and therefore within 10-50 m of sample location based on the scope of the deposit and the lack of evidence for remobilization. Deposit volume is calculated from lateral extent, estimated by observation of the three-dimensional dissection of the deposit and from lithofacies mapping of
DK, NG and RG. Original volume estimates are clearly approximate due to the degree of deposit overlap and erosion. The estimated volume of the individual deposits is between 0.0004-0.003 km3. Typical Strombolian eruptions and Icelandic fissure eruptions have extrusion rates between 10 and 100 m3/s (Parfitt and Wilson 2009). These explosive eruptive rates are also similar in range to the values estimated for subaqueous lobate lava flows (Griffiths and Fink 1992). Estimates for eruption duration can be established from these values to be minutes to a few hours for each sequence.

We have suggested above that the first formation of fluidal bombs is the result of rapid extrusion of magma driven by internal volatiles, jetting the magma into the water column. The shear stress imparted on the surface of the magma exceeds the surface tension causing a separation into magma globules, forming the fluidal bombs (Cas et al. 2003; Head and Wilson 2003; Wohletz 2003). The presence of pillow fragments mixed with fluidal bombs suggests that the pillows were disrupted during the onset of explosivity, but the absence of frothy pillows or pillow fragments suggests that the transition occurred in the vent and not in a growing pillow tube. The coalescence of vesicles and vesicle size indicate decoupled volatile behavior (Clague and Davis 2003; Head and Wilson 2003; Schipper et al. 2011). The ejection of this first globule then exposes a greater surface area of magma to interact with external water. The bomb-bearing lapilli tuff is interpreted as representing the shift from subaqueous magmatic fragmentation to FCI fragmentation. The increased efficiency of the fragmentation is recorded in the overall decreasing grain size of the deposits through the increase in the proportion of lapilli and ash. The sequences described here would be insufficiently characterized by only one grain size faction due to the limitations of each particle type to record the interplay of fragmentation mechanisms observed through this more comprehensive textural study.
The interplay of phreatomagmatic fragmentation (FCI) with magmatic fragmentation is not unique to fully submerged eruptions (Houghton and Schmincke 1989; Skilling 2009; Solgevik et al. 2007; White 1996). However, the initiation of a phreatomagmatic eruption by a decoupled gas magmatic eruption has not yet been described in a completely subaqueous environment. Deposits preserving a magmatic trigger for FCI explosions at Askja likely do not represent an exclusive series of events, but instead represents the dynamic nature of subaqueous explosive eruptions and reinforces the potential for feedback loops of basaltic magma fragmentation mechanisms.

6.0 Conclusion

Pyroclast textures in three subaqueous basaltic sequences from Askja reveal the interaction of magmatic and FCI fragmentation mechanisms as the eruption transitioned from effusive to explosive behavior. The identification of the signature of different fragmentation mechanisms in natural subaqueous phreatomagmatic eruptions remains a challenge. However, the comparison of textures in multiple grain sizes across important facies transitions as in this study can reveal subtle changes in internal volatile expansion and fragment cooling history as preserved in vesicle morphology, distribution and size as well as glass type and microlite abundances. By using an integrated approach it is possible to compensate for challenges such as textural overprinting and limited sedimentary structures. We propose an eruption history for the three sequences described here where the initial disruption of the effusively erupting magma by decoupled magmatic volatile expansion was the result of decompression that may have been the result of drainage or partial drainage of overlying water in the ice-confined lake. This magmatic explosive behavior subsequently enabled FCI, as well as minor trapping of external water and quench granulation.
All of these fragmentation mechanisms influenced the final grain size distribution and pyroclast textures of the sequences. The initial disruption of the magma that was driven by volatile expansion is preserved in the form of the fluidal bombs up to 50 cm in diameter and the large, irregularly distributed, polylobate vesicles of the lapilli and bombs that were no present in the underlying pillows. The role of phreatomagmatic explosions is recorded predominantly in the fine ash fraction of the deposit in the form of blocky, vesicle free grains and the increase and dominance of sideromelane dominated lapilli and fine ash up section. The combination of low efficiently magmatic fragmentation and FCI explosions in the same eruptive sequence highlights the complexity of magma water interactions in wet environments. Given the close genetic and spatial relationship between the pillows and clastic deposits we suggest that the deposits were produced through the continuous eruption of effusive to transitionally explosive behavior. The recognition of such transitional sequences is important as they provide evidence for controls on the onset of explosive activity in subaqueous environments. It is critical to continue to investigate the conditions and triggers of fuel coolant interactions to better model violent phreatomagmatic eruptions.

7.0 Acknowledgments

This work was made possible by a National Science Foundation grant to IPS, DG and AH. Our gratitude goes to Háskóli Íslands, NORVOLK and the Vatnajökull National Park, for field logistics and permits. Dickinson College is acknowledged for the use of the SEM and Robert Dean should be thanked for his assistance using the equipment. Field assistance from R. Wham, R. Lee, A. Lema and M. Ellis was invaluable. This manuscript was improved greatly by two anonymous reviewers.
8.0 References

Gregg TKP, Fink JH (1995) Quantification of submarine lava-flow morphology through analog experiments. Geology 23:73-76

Ross P-S, White JDL (2012) Quantification of vesicle characteristics in some diatreme-filling deposits and the explosivity levels of magma-water interactions within diatremes. Journal of Volcanology and Geothermal Research 245-246

Figure captions

Figure 1 Location of Askja, Iceland including locations of pillow lava, breccia to lapilli tuff sequences. The shaded area represents the field area, Austurfjöll. Sample sites are located in major gullies incised into the base of the glaciovolcanic sequence of Askja. Sample locations from north to south are Drekagil (DG), Nautagil (NG), and Rosagil (RG).

Figure 2 Overview of Drekagil sequence including field image, annotated sketch of sampling sites and stratigraphic log.
Figure 3 Overview of the Nautagil sequence including field image, annotated sketch of sampling sites, and stratigraphic log.

Figure 4 Overview of the Rosagil sequence including field image, annotated sketch of sampling sites, and stratigraphic log.

Figure 5 Comparison of the two dominant pillow lava facies from Austurfjöll. Schematics of the pillow form outlines highlight the regularity of Pl1 and the irregularity of Pl2 lavas.

Figure 6 Field images and schematic characterizations of outsized clasts found within the three sequences described at Askja. A) Image of a broken pillow clast displaying typical rind and vesicle textures of a pillow. B) A fluidal bomb displaying irregular shape and vesicle distribution. Sketches of idealized clasts include a pillow in cross-section, a fluidal bomb in cross-section and an angular block.

Figure 7 Stratigraphic overview of a typical effusive to explosive transitional deposit from Askja. Three grain sizes (blocks/bombs, lapilli, and fine ash) were analyzed for size, morphology, and vesicularity as they trend up section. Bombs are described by maximum clast diameter. Vesicularity of both bombs and lapilli are presented as average values for a stratigraphic layer. Vesicle morphology is presented as representative shapes from actual lapilli measured. The fine ash morphologies are presented as percents of relative abundance through the sequence.
Figure 8 Examples of lapilli and fluidal bomb morphologies and textures that reflect ductile fragmentation of the magma. Images on the right hand side are field images. Images on the left hand side are from a binocular microscope. A) Ductile structures in a lapillus quench crust. B) Large coalesced vesicles in a fluidal bomb. C) Fluidal crust structures preserved on a lapillus by surrounding matrix (indicated by yellow line). D) Convolute bomb shape and vesicles. E) Large coalesced bubbles interacting with the clast surface. F) Fluidal bomb with intact quench rind (broken for sampling). G) Lapillus with stretched vesicles along glassy surface. H) Fluidal bomb with large randomly distributed vesicles. A brittle overprinting is present in images A, E and G, where the lapilli have been brittlely fractured.

Figure 9 SEM secondary electron images of example grain morphologies found in textural analysis of fine ash particles. Adhering particles and aggregate ash particles are common. Arrows are used to highlight features of interest. A) Blocky grain and (left) and fragile spine on margin of a vesicle influenced grain boundary (right) from DG. B) Tube vesicles from DG. C) Vesicles isolated within glassy ash particles from DG. Vesicles may intersect fracture surfaces they do not control the fracture shape. D) Limu o Pele from DG. E) A particle with vesicle-dominated fracture surfaces and fragile spines from NG. F) Ash particles dominated by vesicles From NG. G) Elongate bladed shaped vesicle free particles From DG. Note the micron scale crust flaking off the particle. H) Blocky particles exhibiting scalloped edges from NG. I) Chip and blocky shaped particles from NG. Note the stepped appearance of the conchoidal fracture.
Figure 10 Model of fragmentation mechanisms as they occur during the formation of the three transitional sequences at Askja. Solid lines represent relative dominance of a fragmentation style. Dotted lines indicate continued, but diminished fragmentation. The question mark indicates that the final position of magmatic fragmentation is an inference as the signature is muted by FCI activity by this stratigraphic level. The textures used to construct the model are described.
Subaqueous basaltic magmatic explosions trigger phreatomagmatism: a case study from

Askja, Iceland

Alison H. Graettinger, Ian Skilling, Dave McGarvie, Ármann Höskuldsson

1Alison H. Graettinger (corresponding author)
University of Pittsburgh, 200 SRCC, Pittsburgh PA, 15260
*Currently:
University at Buffalo, Center for Geohazard Studies, 411 Cooke Hall, Buffalo, NY 14260
Telephone: +17166454286
agraettinger@gmail.com

2Ian P. Skilling
University of South Wales, Pontypridd, RCT, CF37 4BD, UK
Telephone: +44 1443 654151
ipskilling@gmail.com

3Dave W. McGarvie
The Open University in Scotland, 10 Drumsheugh Gardens, Edinburgh, EH3 7QJ, UK
Telephone: +44 (0) 131 226 3851
Dave.mcgavie@open.ac.uk

4Ármann Höskuldsson
The University of Iceland, Askja, Sturlagata 7, 101 Reykjavik, Iceland
Telephone +354-5254215
armh@hi.is
Abstract

Sequences of basaltic pillow lavas that transition upwards with systematic gradation from pillow fragment breccias to fluidal bomb-bearing breccia to bomb-bearing lapilli tuffs are common at Askja volcano, Iceland. Based on the detailed textural investigation of three of these sequences, we argue that they record temporally continuous transition from effusive to explosive products that were erupted from and deposited at or near a single subaqueous vent. The recognition of such sequences is important as they provide evidence for controls on the onset of explosive activity in subaqueous environments. Such investigations are complicated by the interplay of magmatic gas expansion, phreatomagmatic and mechanical granulation fragmentation mechanisms in the subaqueous eruptive environment.

The Askja sequences represent deposits resulting from the transition from effusive pillow eruption, to explosive magmatic gas expansion that in turn enabled more effective phreatomagmatic explosions. All of the sequences studied at Askja have textural, componentry and sedimentological characteristics suggestive of a close genetic and spatial relationship between the pillow lavas and all of the overlying glassy clastic deposits. The identification of magma fragmentation signatures in pyroclasts was accomplished through detailed textural studies of pyroclasts within the full range of grain sizes of a given deposit i.e. bomb/blocks, lapilli and fine ash. These textural characteristics were compared and evaluated as discriminators of fragmentation in pyroclastic deposits. The textures investigated include 2-D vesicle and microlite percentages, average vesicle dimensions, vesicle number density, vesicle morphology, sideromelane to tachylite proportions, clast size, clast shape and the nature of any sedimentary structures. The presence of angular vitric clasts within the breccia and lapilli tuff displaying...
fragile glassy projections indicates little or no post-depositional textural modification. **This observation and the fact that the clastic deposits are massive in nature, with no traction-current structures, bedding or erosional contacts observed, is consistent with an interpretation as rapidly-emplaced fallout.** A shift in vesicle and clast textures between the pillow lavas and the large concentration of fluidal bombs in the breccia indicate that the phreatomagmatic explosions were initially triggered by magmatic vesiculation. The initial magmatic gas expansion may have been triggered by depressurization caused by the drainage of the ice-confined lake surrounding Askja. The Fuel Coolant Interactions (FCI) of the more efficient phreatomagmatic explosion was enabled by the increase in the surface area to volume ratio of the fluidal bombs in the water, producing a premix of magma and water. The onset and increasing influence of phreatomagmatic fragmentation is preserved in the presence of very fine blocky ash particles and diminished presence of larger particles such as fluidal bombs. The textural, sedimentological and environmental characteristics of these deposits suggest that phreatomagmatic explosions can be triggered by initial magmatic gas expansion, but that it is likely one of many mechanisms for triggering such explosions.

Keywords: magma fragmentation; phreatomagmatic explosions; basalt; subaqueous eruption

1.0 Introduction

The question of what controls the transition of basaltic effusive to explosive activity in water-rich environments, has been a matter of debate over the last 20 years (Houghton and Nairn 1991; Houghton and Schmincke 1989; Mastin et al. 2004; White 1996; Wohletz 1986; Wohletz 2002; Wohletz 2003; Zimanowski et al. 1997; Zimanowski et al. 2003). The answer to this question has
important implications for modeling volcanic hazards, such as the potential for explosions or the
grain size distribution, height and duration of ash plumes in wet environments. Submarine
exploration technology has advanced our ability to describe subaqueous explosive volcanic
deposits from the submarine environment (Clague et al. 2003; Clague and Davis 2003; Clague et
al. 2009; Eissen et al. 2003). However, the study of explosively generated deposits formed in an
ice-confined (glaciovolcanic) environment offers much more accessible deposits that are
commonly well preserved in three-dimensions. We argue that such centers preserve sequences
that record in situ transitions from effusive to explosive activity at a single vent. The detailed
textural and stratigraphic study of such sequences offers the best opportunity for understanding
the onset of explosive activity and the interplay of fragmentation mechanisms in natural
subaqueous settings.

The focus of this study is three ca. 30 m thick, glass-rich, incipiently palagonitized
basaltic pyroclastic deposits that directly overlie pillow lavas from Askja volcano, Iceland (Fig.
1). All three clastic sequences are massive but display a systematic and continuous fining upward
from pillow-fragment breccia to fluidly-shaped bomb-bearing breccia and then into vitric lapilli
tuff. Ostensibly similar sequences of pillow lavas overlain by breccias, containing pillow
fragments, capped by vitric lapilli tuffs, have been described from many areas, including
ophiolite sequences (Carlisle 1963), Archean basalt provinces (Dimroth et al. 1978), ocean island
settings (Fujibayashi and Sakai 2003) and several glaciovolcanic sequences (Jones 1970; Skilling
2009; Werner and Schmincke 1999). Such sequences could clearly be derived through many
processes. Common interpretations for these sequences can be divided into those where the
clastic deposits are (1) erupted from a different vent than that which produced the lavas, (2) were
produced by the same vent that produced the lavas but not as part of a temporally continuous
eruption, (3) or were erupted from the same vent as lavas and were part of a continuous eruption. Mechanisms that produce unrelated sequences of pillow lavas and clastic deposits include deposition of density currents from nearby vents or post-emplacement collapse of deposits on top of the pillows. Similar sequences produced from the same vent without continuous eruption include flow related collapse (autoclastic breccias), intrusion of pillowed dikes into clastic deposits, or explosive activity instigated under already solidified lava. Based on a detailed textural analysis of the sequences from the Austurfjöll massif of Askja, we argue that the deposits were produced from the same vent over a brief eruption that transitioned from effusive activity to magmatic explosive, and then to phreatomagmatic explosive eruptive activity.

The interpretation of such clastic deposits relies heavily on the distinction of the influence of different fragmentation mechanisms in the formation of subaqueous basaltic pyroclasts along the contact between facies within the transitional sequences. Evidence for the mechanisms of fragmentation, transportation and deposition are preserved in the textures of subaqueous pyroclasts over the full range of grain sizes, including bombs, lapilli and fine ash, though most research has focused on fine ash textures (Büttner et al. 1999; De Rosa 1999; Dellino et al. 2001; Dellino and Liotino 2002; Durig et al. 2012; Ersoy et al. 2006; Heiken 1971; Mattox and Mangan 1997). These textural data can then be used to make inferences on the controls of the onset of subaqueous explosive activity and specifically phreatomagmatic activity. In this study we present data on textural characteristics of fine ash to block-sized clasts that could be used to help distinguish phreatomagmatic from magmatic fragmentation, and argue that the phreatomagmatic eruptions in our study area were generated following an initial mingling (premixing) of magma and water driven by magmatic fragmentation. It is not clear how important or common initial mingling by magmatic fragmentation might be in basaltic
phreatomagmatic sequences elsewhere, and is likely only one mechanism for instigating such
eruptions. The uniquely dynamic nature of the ice-confined lakes may play a role in the initiation
of magmatic gas expansion through depressurization caused by lake drainage. Nevertheless,
similar textural investigations may be used to identify the mechanisms during the onset of
exposivity in other basaltic phreatomagmatic systems.

1.1 Eruption setting
Basaltic glaciovolcanic systems under thick ice (>400 m) typically evolve into ice-confined
lacustrine centers (Allen et al. 1982; Gudmundsson 2003; Gudmundsson et al. 1997; Werner and
Schmincke 1999). Within the ice-confined lake the water level may change rapidly and
repeatedly through time (Bjornsson 2002; Gudmundsson et al. 1997; Höskuldsson et al. 2006;
Smellie et al. 2008). Simplified models of such centers include initial subaqueously emplaced
effusive products, dominated by pillowed lavas, followed by a shift towards more explosive
activity with deposition of glassy fragmental deposits (Allen 1980; Jones 1970; Moore et al.
1995; Werner et al. 1996). Within this model it is assumed that there is a decreasing
fragmentation and dispersal of subaqueous eruptions as confining pressure or water depth
increases, particularly above 400 m (Allen 1980; Clague et al. 2003; Zimanowski and Büttner
2003). However, investigations of submarine basaltic deposits are revealing the presence of
explosively derived deposits at depths up to 3 km (Clague and Davis 2003; Fujibayashi and
Sakai 2003; Helo et al. 2011; Portner et al. 2010; Schipper and White 2010; Schipper et al. 2010;
Schipper et al. 2011; Sohn et al. 2008; Wohletz 2003). This uncertainty over the importance of
controls other than confining pressure (Mastin et al. 2009; Schipper et al. 2011; White 1996) on
the triggering of subaqueous explosions emphasizes the importance for detailed studies of natural deposits that may record the onset of basaltic explosions in water.

1.2 Field area

Askja is one of the largest and best-exposed formerly ice-confined volcanoes on Earth. Most research to date has been on its Holocene (ice-free) evolution. It comprises a complex of basaltic glaciovolcanic massifs that are dominated by pillow lavas and subaqueously emplaced vitric lapilli tuff deposits. These massifs are cut by at least three calderas and surrounded by Holocene subaerial lava flows (Fig. 1). The greatest volume of glaciovolcanic deposits at Askja is the eastern mountain massif, Austurfjöll, which is truncated by the two youngest calderas. Austurfjöll has been described briefly by Brown et al. (1991), Sigvaldason, (1968 and 2002) and more recently in detail by Graettinger et al. (2012).

Austurfjöll is incised on its eastern side by large gullies that extend up to 3 km into the massif. The vertical exposure within the gullies is between 10 and 100 m. These exposures are dominated by pillow lava sheets, lava breccias and vitric lapilli tuff. Three of these gullies contain well-exposed sequences that display gradual transitions up section between effusive pillow lavas at their base, to an upward fining pillow fragment and bomb-bearing breccia and vitric lapilli tuff sequence. The sequences have lateral continuity of tens of meters and can be traced in multiple directions. The three gullies from north to south are named, Drekgil, Nautagil and Rosagil (Fig. 1).

2.0 Methods
This study is based on field work conducted over two seasons at Austurfjöll. The three sequences of basaltic pillow lava, pillow-fragment breccia, fluidal bomb-bearing breccia and vitric lapilli tuffs were identified in 2010 and revisited in 2011 for more detailed sampling and study. Samples were collected from the top of the basal pillow units, the lowermost breccia at the contact with the pillow lavas and then progressively up through the section of overlying breccias and vitric lapilli tuffs, with an average sample interval of two meters. At each location a sample of matrix (lapilli and any ash present) and an outsized clast was collected. Outsized clasts are defined here as the largest clasts that exceed the visually estimated median grain size at a particular stratigraphic level. Measurements were taken of the average clast size and the outsized clasts. Measurements were limited to the longest axis of the largest outsized clasts with intact glassy chill rinds around their entire margins. Field measurements of vesicularity percentages of the core and glassy rim of outsized clasts were supported by measurements of field photographs. A minimum of five measurements of such clasts were taken at each site. If a secondary size mode of outsized clast was present, the largest clasts representative of both modes were studied.

A binocular microscope with mounted digital camera was used to estimate the vesicularity percentage of partially disaggregated matrix and clasts. Additional observations of vesicle shape, distribution, alignment and coalescence were recorded. These observations were also used to estimate the mean matrix grain sizes. The partial consolidation, high friability and fragile clast morphologies precluded full granulometric analyses. Digital images of thin sections were also used to quantify 2D vesicularity percentages and dimensions using ImageJ software. Vesicle number density (Nv) was calculated based on methods outlined in Shea et al. (2010). In addition to vesicle textures, the presence of microlites and rare phenocrysts, tachylite, sideromelane and mixed tachylite-sideromelane fragments were documented across matrix and
Detailed logging of sedimentary structures and X-ray fluorescence (XRF) analyses of outsized clasts and pillows were completed for each sequence to investigate the genetic relationships between the facies of the sequence. XRF bulk rock major element analyses were conducted at Washington State University GeoAnalytical lab from pillow lavas, fluidal bombs in the breccia and outsized clasts in the lapilli tuff.

Textural analysis, using secondary electron images collected on a JEOL JSM-5900 at Dickinson College, of the fine ash fraction included study of grain mounts of loose grains, coated in carbon. Samples were sieved to isolate particles <50 μm to target potential ‘active’ particles (<130 μm) of fuel coolant interaction (FCI) experiments (Büttner, 2002). Textures described include ash morphology (blocky and equant, chips and blades, or spines and needles), conchoidal fracture, the presence of intact or broken vesicles, abrasion features (scalloped edges), coatings and adhering particles. Textures were recorded in a per grain basis, so percentages represent the abundance of a given texture, not volumetric presence of vesicles within the ash particles.

3.0 Overview of lithofacies

All three sequences are exposed in steep walled gullies incised into the base of the eastern margin of the 750 m high Austurfjöll massif of Askja volcano (Fig.1). The sequences have basal pillow lavas overlain by pillow-fragment and fluidal bomb-bearing breccias and capped by vitric lapilli tuffs. Fluidal bombs also occur within the lapilli tuff sequences, but decrease in abundance up section. The transition from breccia to lapilli tuff is defined as the point where the fluidal bomb presence is less than 30 vol.% of the deposit. The clastic deposits range from 15-35 m in...
thickness and display gradational transitions between each lithofacies. Geomorphologic
evidence, particularly the thickness of subaqueous sequences at Austurfjöll (700 m), and volatile
saturation pressure data indicate the eruption of the basal lavas occurred in water ca. 700 m deep,
or beneath some combination of water, ice and sediment with a confining pressure of ca. 7.7
MPa (Cameron, B. unpublished data). There is no structural or textural evidence that these three
sequences include subaerially emplaced deposits.

Pillow lava flows at Askja can be subdivided into two main lithofacies, named Pl1 and
Pl2. The distinction between the two lithofacies is the variability in the dimensions of the pillow
tubes and the frequency of transitions into non-pillowed lavas. Pl1 lavas are comprised of highly
regular tubes, both in shape and cross-sectional dimension with average diameters of 50 cm and
a range of <20 cm in diameter per within a pillow lava sheet. Pl2 lavas contain a much greater
diversity of pillow dimensions, with cross-sectional diameters ranging from 50–200 cm. They
also commonly display transitions to columnar, curvi-columnar and blocky-jointed subaqueously
emplaced lava flows without pillow forms. Pl2 lavas also have more distended pillow shapes and
display less regular stacking (Fig. 5). Pillows measured in the basal lava of the three transitional
sequences and apparently intact pillows in the lowermost pillow breccia, fall within observed
range of the massif, where cross-sectional diameters are typically 60 cm and core vesicularities
around 50 vol.%. Their internal variability and common occurrence of transitions to non-
pillowed lavas means that the basal lavas of all three sequences described here are classed as Pl2
facies.

In all three sequences the breccia that immediately overlies the pillow lavas is initially
entirely clast-supported, composed of apparently intact pillows and pillow fragments, with
decreasing occurrence of obvious pillow forms (intact or otherwise) within 1-2 meters of the
contact. Clasts in the breccia become progressively more isolated in the vitric lapilli matrix (30-
70 vol.% of the breccia) up section and pillow fragments are replaced by fluidal bombs within
one meter of the pillow lava to breccia contact.

Pillows are distinguished by their regular, ellipsoidal cross-sectional shape and
occasional presence of keels. Typical pillows exhibit vesicle bands and pipe vesicles (Fig. 6).
Pillows typically have regular glassy rinds between 0.1 and 1.5 cm thick. Vesicles are typically
round and undeformed in the vesicle bands that dominate the outer few cm of the pillow. Pillow
cores may display coalesced vesicle morphologies and radial pipe vesicles are common at the
core and rim of the pillow (Edwards et al. 2009; Fujibayashi and Sakai 2003; Höskuldsson et al.
2006). Pillow fragments display partial glassy quench rinds, interrupted vesicle bands, pipe
vesicles and incomplete pillow forms. Fluidal bombs on the other hand display a wider range of
cross-sectional morphologies, with convolute clast shapes and an irregular distribution of
irregular vesicles. When not intact, bombs display a jig-saw fit fracture pattern. The average
fluidal bomb vesicularity is on the order of 25% but can be as much as 60 %. Fluidal bombs have
glassy rinds between 0.1 and 2 cm in diameter. Vesicles are also typically coalesced and
polylobate, with an abundance of elongate vesicles parallel to the glassy rim. Radial pipe vesicles
are absent. The distribution of vesicles within the bombs is irregular. Vesicle morphology within
the bombs displays an increase in coalescence up section (Fig. 7). The breccia matrix comprises
coarse, glassy and angular vitric lapilli (0.5-2 cm). All the vitric clasts within the breccias and
lapilli tuffs except fluidal bombs are highly angular with fragile shapes.

The vitric lapilli tuff makes up the bulk of the sequences. The change from breccia into
lapilli tuff is characterized by a gradual decrease in the abundance of fluidal bombs with height
in all three sequences, from 30 vol.% in the top of the breccia unit to 5 vol.% at the top of lapilli
tuff (Fig. 2-4). Weak sub-parallel bedding develops only in the upper 3 m of the lapilli tuff in two of the sequences, NG and RG. The diameter of the bombs peaks in the lower portion of the lapilli tuff, frequently within 5-10 m of the facies transition (Fig. 7) and then decreases rapidly up section. Lapilli are 1-3 cm are dominantly equant and angular, but may have partial fluidal margins and display no systematic change in size up section. Vesicles in the vitric lapilli display a wide range of morphologies that include isolated ellipsoidal to irregularly shaped vesicles, high degrees of interconnectedness, and the presence of tube vesicle morphologies (Fig. 8). Lapilli vesicularity is internally consistent between 20-40% depending on the sequence. The microlite content of bombs increases up-section from 2% up to nearly 10%. The microlite content of lapilli however, peaks in the breccia, and remains low in the lapilli tuff <10%. Clasts greater than 2 cm have sideromelane rims that can reach up to 1 cm thick and microlite-bearing tachylite cores. Fragments below 2 cm in diameter are dominated by sideromelane. Consequently, the overall ratio of sideromelane to tachylite in the deposit increases up-section. Ash and lapilli are typically very angular with delicate spines and margins preserved (Fig. 8). The clasts display no rounding or removal of fragile spines from fine ash and the deposits exhibit no traction current structures, slump structures or other evidence of remobilization or lateral transport. While palagonitized deposits are common within Austurfjöll, the deposits described here have very limited and impersistent occurrence of palagonite.

The bulk rock chemistry for the sequences of the basal pillows, fluidal bombs of the breccia and lapilli tuff and lapilli clasts were analyzed for major and trace element abundances. The deposits are all tholeiitic basalts with limited internal variability between clast types in given sequence as highlighted in Table 1.
Fourteen fine ash samples were selected for SEM micro-textural analysis from the uppermost breccias and through the overlying lapilli tuff unit of the Drekašugil and Nautagil localities. Between 100 and 180 grains <50 microns were counted for each sample and values are reported as abundance of grains with a target texture. Individual particles may display multiple textures. Less than 25% of the fine ash particles had any obvious vesicles (Fig. 9). Of the vesicles present, only about 3% had clast margins dominated by the presence of a vesicle (where the vesicle influences the shape of 40% or greater of the margin. The bulk of vesicles observed at this scale were small, round and isolated within significantly larger grains and dissected by planar or obviously stepped conchoidal fracture surfaces. Vesicle sizes recorded in the fine ash were mostly between 5 and 100 microns in diameter. A significant portion of fine ash grain shapes (35-40%) were chips (one small dimension, two equal dimensions), blade (one small, one long dimension), or needle-like (two small and one long dimension) (Fig. 9). Approximately 45% of fine ash grains were blocky and roughly equant or prismatic in shape (all dimensions are similar; Fig. 9A). The fine ash samples also include minor occurrences of tube vesicle rich clasts (<10 %) and limu o Pele (<5 %). Limu o Pele are thin (μm to mm) curved lenses of sideromelane glass (Fig. 9D). These curved sheets of glass are significantly thinner than the chips described above. The curvature of the limu o Pele suggests they were derived from vesicles with a diameter greater than the typical vesicles preserved (>60 μm) at this grain size. There are no crystals in the fine ash component of any of the sequences.

Fine ash particles with sharp edges showed evidence of minor abrasion, including rounding and scalloping (Fig. 9H), on less than 10% of all fine ash grains studied. In contrast convolute and fragile shapes, including thin spines of glass (Fig. 9A,D,E), were present on an average of 12% of the fine ash grains. The fine ash fraction of the NG and DG sections displays
some minor discoloration from a grey brown to yellow brown, commonly associated with palagonatization. Other evidence for chemical alteration of the fine ash fraction includes pitting of fracture surfaces and flakey coatings. Adhering finer particles are common on 50% of the fine ash grains, but rarely obscure the complete grain. Some particles have thin (micron) skins or coatings that are cracked and flaking away from the grain.

3.1 Individual sequences

The three sequences studied occur within deep gullies called Drekagil, Nautagil and Rosagil (Fig. 1). The sequence in Drekagil (DG) is exposed in a near vertical cliff within a 50 m deep east-west trending gully. Laterally, the sequence overlies a sharp erosional contact of the top of a sequence of well-bedded lapilli and ash tuffs that display significant palaeotopography on their upper surface (Fig. 2). The pillow lavas occur as a thick (30 m) valley-filling pillow lava sheet that abuts and overtops a paleo-cliff of ash and lapilli tuff. Due to the steep nature of the modern gully, sampling of the pillow unit was limited to the margins of the lensoid unit. The corresponding stratigraphic log follows a diagonal path from the margin of the transitional sequence to its center to access the lapilli tuff directly overlying the greatest thickness of the pillow unit (Fig. 2). The pillow unit is well exposed in the vertical wall, directly below the lapilli tuff. The breccia that overlies the pillow lavas is ca. 5 m thick and initially clast supported with intact and fragmented pillow clasts preserved in the basal 1 m. The clasts are replaced by fluidal bombs with increasing lapilli matrix presence (transitioning from 30-70 vol.% of the breccia) in the upper 4 m. The lapilli tuff has a thickness of 14 m with fluidal bombs throughout. Maximum bomb sizes are 50 cm, but are predominantly between 20-30 cm in the lapilli tuff. The sequence
is capped by a convolute bedded ash that is overlain by a feldspar-phyric non-pillowed sheet lava. The contact between the lapilli tuff and the ash tuff is sharp, but there is no evidence of significant erosion. The sequence at Drekagil is the only one of the three studied that contains accidental lithics in the lapilli tuff, namely subangular porphyritic tholeiite lava lapilli (< 5 cm in diameter), which comprise <1 vol.% of the deposit and are too infrequent to have any obvious trend in occurrence.

Nautagil (NG) contains the thickest of the sequences (35 meters) where it forms the entire southern wall of the gully (Fig. 3). The thickness of the basal pillow lava unit is uncertain as the pillows are partially covered by unconsolidated deposits of pumice from the 1875 eruption of Askja and local talus, but the pillow lavas are at least 2 m thick. The overlying breccia is 7 m thick with pillow fragments dominating the lowest 2 m giving way to fluidal bombs and increasing (up to 60 vol.%) lapilli matrix the upper 5 m. This breccia is overlain by 24 meters of lapilli tuff. In the upper 3 m of the lapilli tuff a weak parallel ca. 10° bedding dipping to the northeast (away from Austurfjöll) develops. Laterally, the deposit displays some palagonitization, but typically displays only incipient palagonitization along the sampled southern wall of the valley. This sequence is cut by a basaltic dike that is one of the type examples of coherent margined volcaniclastic dikes (CMVDs) described from Askja and interpreted as having formed by dike emplacement into ice-cemented volcaniclastic sediments (Graettinger et al. 2012).

The exposure in Rosagil (RG) makes up a large portion of the southern wall of the gully, with a total thickness of 16 m. The basal pillow lava exposure is limited due to talus, but has a minimum thickness of 2 m (Fig. 4). The breccia is 4 m thick with pillow fragments dominating the lower 1 m and fluidal bombs occurring in the upper 3 m. The breccia is overlain by ten
meters of lapilli tuff. A weak parallel and shallow (10° dipping northeast, away from the summit of Austurfjöll) stratification develops in the upper meter of the tuff. The upper 1 m of the deposit is also locally more intensely palagonitized than the rest of the deposit. Laterally (2-5 away from sampling area) this sequence is intruded by pillowed intrusions with meter-wide peperitic margins.

4.0 Interpretation of deposits

Sequences of pillow lava, to pillow fragment and fluidal bomb breccias, to lapilli tuff sequences are not uncommon in subaqueous basaltic sequences (Carlisle 1963; Dimroth et al. 1978; Fujibayashi and Sakai 2003; Jones 1970; Skilling 2009; Werner and Schmincke 1999). Their gross similarities between these pillow lava, breccia, and tuff sequences belie the range of mechanisms that can produce outwardly similar deposits. The following discussion will use detailed stratigraphic and textural studies of the facies present at Askja to identify the eruptive history of these deposits.

The structure and components of the Austurfjöll sequences are indicative of a wholly subaqueous environment, including pillowed lavas, sideromelane dominate clastic deposits and the absence of bomb sags, oxidation, or other emergent textures. The morphology of the massif and dominance of subaqueous deposits up to 700 m above the local base and volatile analyses (see section 3.0) from pillow glass rinds indicate that the depth of water was likely on the order of 750 m. The sequences of pillowed lavas, to pillow fragment and fluidal bomb breccia to fluidal bomb-bearing lapilli tuff show consistent internal bulk rock geochemistry suggestive of a co-genetic origin for the pillows and clastic components of the deposits (Table 1). The vesicle
The morphology of the lapilli is highly similar to that of the fluidal bombs supporting the related genesis of the pyroclasts. The dominant feature of the three sequences is the massive nature of the lithofacies associated with a progressive upward fining from pillow breccia, through fluidal bomb breccia, to lapilli tuff. The lapilli show fairly consistent dimensions throughout the sequence. The transitions between the facies are gradational and show no sedimentary structures indicative of hiatuses in the eruption. The gradational upward fining, associated poor sorting and random clast orientation of these sequences is likely the result of high sediment fallout rates possibly from direct deposition from subaqueous convective plumes (Maicher et al. 2000). Grading of outsized clasts may result from Stokes settling of larger particles before smaller particles; however, the lack of sorting present in the lapilli and ash sized particles, and initial increase in bomb size, does not support this mechanism for bomb distribution in these deposits. A weak parallel bedding is present only in the upper few meters of two of the three deposits. This bedding may be due to time gaps in deposition or delayed gravitational settling in the water column of the finer deposits in this case lapilli and fine ash late in the eruption. Loading structures, traction currents, slump structures and other structures suggesting lateral transport of the deposit are not present (Maicher et al. 2000; White 2000). The apparent lack of remobilization is also supported by the lack of alteration of sharp grain edges (Solgevik et al. 2007) and the preservation of fragile glassy spines and limu o Pele (Fig. 9A,D,E) that would be easily damaged if mobilized in any granular flow or slump (Sohn 1995). The massive nature and systematic grading of coarser clasts through the deposit supports continuous deposition of pyroclasts. This observation, the presence of significant bombs and the limited lateral extent of the deposits suggest that they are vent proximal.
If the deposits are interpreted as primary and vent proximal, it would imply that the sequence represents the inverse of what was expelled from the vent, suggesting that the eruption initially produced large and abundant blocks and bombs, that progressively decreased in size and abundance through the eruption, until a lapilli dominated deposit of consistent grain-size was formed. Based on the lack of remobilization, co-genetic origin and structureless nature of the deposits we interpret the sequences to represent in situ temporally continuous eruptions from a single vent that display a transition from effusive to explosive basaltic activity.

The identification of fragmentation mechanisms in subaqueous pyroclasts remains a challenging task, dependent on the presence of multiple collaborating pieces of evidence. Previous pyroclastic studies have put emphasis on VND and fine ash textures (Ersoy et al. 2006; Lautze et al. 2012; Murtagh et al. 2011; Shea et al. 2010), but these features are not consistent indicators of fragmentation (Mattsson 2010; Ross and White 2012). The basaltic pyroclastic textures useful for such studies are summarized in Table 2 and evaluated for the relative strength of different textural parameter historic uses.

4.1 Pillow lava

Pillow lava sheets of both Pl1 and Pl2 type are the dominant morphology of subaqueous lavas at Askja. The relationship between subaqueous lava flow morphology and effusion rate is established based on three major groups with pillow lavas representing the lowest effusion rate, lobate pillow-free lavas an intermediate effusion rate and sheet flows (highest effusion rate)(Gregg and Fink 1995; Gregg and Smith 2003; Griffiths and Fink 1992). Lava flow morphology can also be a factor of slope angle (Gregg and Fink 1995; Gregg and Keszthelyi 2004), but as the large pillow sheet flows at Askja occur on shallow slopes, except where they
abut paleotopography, slope effects can be ignored here. Pl1 lavas, that display regular pillow forms and stacking, are interpreted as the lowest effusion rate end-member of subaqueous lava flows. Pl2 lavas have a more complex internal structure and locally display textures of lobate subaqueous lava flows, including blocky and columnar jointing domains mingled with large irregular pillow lava tubes. These structures suggest that Pl2 lavas represent an intermediate step between low effusion rate pillow lavas and moderate effusion rate lobate flows (Bear and Cas 2007; Dimroth et al. 1978; Griffiths and Fink 1992; Walker 1992). All three sequences described here have these higher effusion rate pillowed lavas at their base.

4.2 Pillow fragments and fluidal bombs

The breccias that immediately overlie the pillow lavas are dominated by three main types of block-sized components: isolated intact pillow forms, pillow fragments and fluidal bombs. Pillows can become isolated or appear to be isolated in clastic matrix through an influx of fragmental material during effusion without significant interaction with the lava (Carlisle 1963; Dimroth et al. 1978; Schipper et al. 2011), intrusion of pillowed dikes through fragmental deposits (Carlisle 1963; Edwards et al. 2009; Gorny et al. 2012), by gravitational detachment and deposition away from the main lava flow (Bevins and Roach 1979; Dimroth et al. 1978; Gorny et al. 2012; Moore 1975), or as ballistic blocks into clastic deposits (Staudigel and Schmincke 1984). Well incised exposures, like at Askja, are useful to determine if pillow clasts are truly isolated, or if they can be traced to an intrusion or pillow lava tube. In the Askja deposits, intact isolated pillows are the least common block-sized component, and while intrusions are present, sampling was preferentially collected away from exposed intrusions. Consequently, at Austurfjöll apparently intact pillows in the breccias are interpreted as isolated clasts.
Angular pillow fragments can be formed through gravitational collapse of an advancing flow (Jones 1970; Moore 1975), or any other brittle break-up of partially or fully cooled pillow lavas such as slumping (Cas et al. 2003; Jones 1970) or through explosive disruption of an existing flow (Smellie and Hole 1997). Differentiation of these processes requires detailed investigation of the clast morphologies and three dimensional exposures of the deposit structure. The breccia clasts at Askja were described in detail and are dominated by apparently intact pillows, and within a few meters, fluidal bombs. Angular pillow fragments do occur along the contact with the pillow lavas, but are notably rare higher in the clastic sequences.

The deposits described here have significant lateral continuity and do not display any bedding, including slump structures, nor do they display any transitions into competent lava flows. Flow-generated “autoclastic” breccias are frequently observed within large pillow sheets at the Askja complex, but they occur as lenses between multiple lava flows and have both lateral and vertical gradational contacts with coherent pillowed lavas with a dominance of angular pillow fragment clasts. The Austurfjöll deposits however, contain an abundance of fragile glass features, including glassy rinds, complex fluidal shapes, spines on fine ash and the lack of sedimentary structures indicating lateral transport, all of which suggest that they are not reworked. Additionally, if the deposit experienced collapse or transport a greater proportion of angular blocks would be expected rather than the dominance of fluidal bombs with intact rinds as observed at Askja. The componentry, fragile grain edges, and structureless upward fining of the transitional sequences of DG, NG and RG are suggestive of an explosive origin for the breccia with high rates of settling through a water column.

Fluidal bombs display convolute shapes reflecting ductile fragmentation of liquid magma (Houghton and Gonnermann 2008; Houghton and Nairn 1991; Houghton and Schmincke 1989;
Walker and Croasdale 1971). Similar clasts have been described in submarine sequences, where they have been misnamed “pillows” (Portner et al. 2010; Staudigel and Schmincke 1984) but have also been recognized as juvenile fluidal bombs in some sequences (Cole et al. 2001; Simpson and McPhie 2001; Sorrentino et al. 2011; Staudigel and Schmincke 1984). The fluidal bombs from Austurfjöll share significant similarities in morphology, vesicularity and coalescence of vesicles to the examples attributed to subaqueous fire fountaining (Cas et al. 2003; Simpson and McPhie 2001; Staudigel and Schmincke 1984). Bombs in subaerial Strombolian and Hawaiian and Surtseyan deposits can have fluidal shapes including fusiform, ribbon, or cow-pie morphologies that all result from the ductile disruption of liquid magma (Houghton and Gonnermann 2008; Houghton and Schmincke 1989; Murtagh et al. 2011; Sorrentino et al. 2011; Walker and Croasdale 1971). Fluidal shapes in subaerial environments are most commonly associated with fire fountaining (Cas et al. 2003; Houghton and Gonnermann 2008; Houghton and Schmincke 1989). The fluidal bombs at Austurfjöll are distinct from the angular blocks that are common in Surtseyan sequences (Brown et al. 1994; Sohn 1995; Sorrentino et al. 2011), which are derived from solidified lava, e.g. from cooled lava flows, larger fragmented bombs, vent walls, or intrusions. Unlike typical Surtseyan eruption deposits, fluidal bombs dominate the breccias and lower lapilli tuff of the Askja sequences and angular bombs (pillow fragments) are limited to absent. Juvenile bombs are also frequently subordinate in abundance to such accidental lithics in Surtseyan eruption deposits (Murtagh et al. 2011; Sohn 1995; Walker and Croasdale 1971). Descriptions of bombs are notably absent in numerous characterizations of deep submarine explosive eruptions, which may in part be due to sampling logistics (Clague et al. 2003; Clague and Davis 2003). However, the presence of these fluidal bombs, and the observation of fluidal ejecta in FCI experiments (Büttner et al. 2002; Grunewald
et al. 2007; Ross and White 2012; Zimanowski et al. 1997), have not yet been incorporated into models of fragmentation. Consequently, the fluidal bombs within the Austurfjöll sequences are interpreted as juvenile products of subaqueous explosive magmatic fragmentation, based on their initial abundance, morphology, intact glass rinds and distinctive vesicle pattern from the pillow lavas at the base of the sequence.

Subaerial Strombolian and Hawaiian bombs typically display a range of vesicularity of 30-60 and 60-90 vol.% respectively (Brown et al. 1994; Houghton and Schmincke 1989). These values are higher than what is observed at Askja (20-60 vol.%) or typical Surtseyan eruptions (5-40 vol.%)(Brown et al. 1994; Cas et al. 2003; Head and Wilson 2003; Murtagh et al. 2011; Sorrentino et al. 2011). Head and Wilson (2003) suggest that the vesicularity required for deep subaqueous explosive eruptions is 75%, but values are commonly reported significantly lower at mid-ocean ridges (Clague and Davis 2003). The boundaries between eruptions that are described as “Surtseyan” and “Strombolian” are fuzzy and both behaviors have been described within a single eruption (Houghton and Gonnermann 2008; Houghton and Nairn 1991; Houghton and Schmincke 1989). Similarly, the recognition of bombs or clasts generated in wetter versus drier environments can be difficult without contrasting textures revealing interaction with air (oxidization) vs. water (thick glassy rinds) within the same deposit (Brown et al. 1994; Sorrentino et al. 2011) and indeed the presence or absence of water in the environment does not automatically dictate the fragmentation style (Table 2). Bomb vesicularity is frequently one of the few characteristics used to differentiate between subaerial and phreatomagmatic eruption deposits, where typical Surtseyan bombs have lower average vesicularities than typical Strombolian bombs (Houghton and Gonnermann 2008). Fluidal bombs from Askja have low vesicularites (20-60%), thick glassy rinds (0.2-1.5 cm) and no apparent oxidization showing the
greatest similarity to Surtseyan bombs, but having irregular vesicle distributions and polylobate
shapes typical of Strombolian subaerial bombs. The frequent presence of the bombs indicates a
low efficiency of fragmentation relative to that of phreatomagmatic explosions low in the
sequence.

4.3 Lapilli and coarse ash
Lapilli dominate the bulk of the deposit from the matrix of the breccia to the top of the lapilli
tuff. The dominant lapilli size range is from 1 to 3 cm with vesicle morphologies and shapes
similar to vesicles found in the fluidal bombs. The lapilli may display partial quench rims up to 1
em thick or be entirely glassy. The bulk of lapilli are equant in size and serve as matrix for the
larger blocks and bombs in the upper breccia and lapilli tuff. The lapilli are nominally smaller in
the upper lapilli tuff, but the range in lapilli size is limited (~1 cm). The lapilli are interpreted as
the products of the breakup of larger globules of melt (like fluidal bombs) and the disruption of
melt directly at the vent. Fragmentation of the lapilli reflects a combination of magmatic
degassing, quench granulation and brittle fragmentation from interaction with other particles or
the conduit during transport and deposition. The low percentage of microlites and dominance of
sideromelane glass are indicative of rapid cooling of smaller juvenile fragments, suggesting that
there is greater primary fragmentation influencing lapilli formation.

4.4 Fine Ash
Fine ash first occurs within the sequences in the lapilli tuffs and progressively increases in
abundance up section. In order to use fine ash textures to infer primary fragmentation
mechanisms, it must be assumed that they are the result of molten magma break up, not post-
explosive mechanical fragmentation (Mattox and Mangan 1997) an assumption supported by their very fine and blocky nature and preserved fragile textures. The fine ash component of the DG and NG tuffs are dominated by chips, blades and needle shapes that are associated with mechanical granulation in experimental magma-water interactions (Büttner et al. 1999) (Fig. 9). Particles with these textural signatures of quench fragmentation are abundant (up to 40%) in the fine ash fraction of the breccia and lapilli sequences. Evidence of the entrapment of external water within the melt, is preserved in the presence of a small percentage (5%) of limu o Pele, representing local ductile deformation in the formation of a large bubble wall fragment (Maicher et al. 2000; Schipper et al. 2013; Schipper and White 2010; Schipper et al. 2011).

Blocky, equant fine ash grains **with stepped features and an absence of significant vesicle influence** are frequently called ‘active particles’ (<130 microns) of FCI (Büttner et al. 2002; Wohletz 2003; Zimanowski and Wohletz 2000). Blocky textures can also be produced in non-explosive interactions with water and wet sediment, but the resulting grain size are coarse ash to fine lapilli (Mastin et al. 2009; Schipper et al. 2011). These particles are all the product of rapid thermal transfer from the particles to a coolant, resulting in the brittle fragmentation of the magma.

Blocky/equant fine ash particles make up on average 45% of the fine ash fraction of the Austurfjöll sequences. Lapilli within the breccias and tuffs of the sequence between 2-20 mm also display blocky equant shapes, but have vesicularities up to 25 vol.% and crystal contents up to 10 vol.%, whereas the blocky fine ash fraction are crystal free. The fine ash particles that do contain vesicles were counted separately and display a much lower presence of vesicles in general and notably fewer fracture surfaces that are clearly influenced by vesicle walls than similarly sized particles from a purely magmatic eruption (Houghton and Gonnermann 2008).
a result of the particle size investigated the vesicles preserved in the fine ash are much smaller
than were preserved in the lapilli and fluidal bombs. It is nevertheless important to acknowledge
the similarity in morphology of the fine ash particles with coarser grain fractions in the
sequences at Askja as well as with those in non-explosive thermal granulation experiments.
Scalloped edges, characterized by small ~1-2 micron curved gashes along the margins of grains
(Fig. 9H) and rounding of fine ash particles are indicative of physical alteration of fine ash
particles (Solgevik et al. 2007), but were only found on 10% of fine ash grains studied at
Austurfjöll. Fragile shapes, including thin spines of glass, were present on an average 12% of the
fine ash grains, such delicate features would be difficult to preserve in the event of any
remobilization of the deposit. Flakey coatings probably indicate minor alteration post-
fragmentation along with the orange discoloration of fine ash these indicate weak hydration,
incipient palagonatization, of the deposits (Büttner et al. 2002; Büttner et al. 1999; Harpel et al.
2008; Nemeth and Cronin 2011). Fine ash particles are a critical grain size for unraveling the
fragmentation mechanisms of the eruptions as they represent the most efficient fragmentation
and require the greatest energy to produce. The size of these grains means that they only preserve
the last stage of fragmentation, as interacting fragmentation mechanisms may destroy much of
the earlier evidence of less efficient fragmentation mechanisms. Such particles are also limited as
they do not make up more than 10% of the total deposit volume at any stratigraphic level. The
finest grains must be studied in the context of detailed analysis of the whole deposit including
larger pyroclasts, eruption, transport and depositional processes and their environments.

Mechanisms of magma fragmentation clearly impart textural characteristics to glass
particles at all scales. Vesicle size, shape and alignment and interconnectedness reflect magmatic
volatile exsolution, fragmentation and quenching with implications for the relative timing of all
of these processes (Murtagh et al. 2011; Stovall et al. 2011). Quench rind thickness, sideromelane vs. tachylite ratios and microlite presence indicate the relative rate of cooling (Schipper et al. 2011). However, the signatures of initial fragmentation can be altered by subsequent fragmentation and shape modification during transport, deposition and chemical alteration. The final deposition of subaqueous volcaniclastic material is commonly the result of lateral transport mechanisms such as density currents (Maicher et al. 2000; Smellie and Hole 1997; White 2000), the collapse of over-steepened deposits (Jones 1970; Sohn 1995), or suspension settling (Eissen et al. 2003; Maicher et al. 2000). Remobilization can cause additional fragmentation and/or impart textures such as the chipping of edges or rounding through abrasion (Solgevik et al. 2007), muting or destroying textural signatures of initial fragmentation. The introduction of accidental clasts during transport also complicates interpretations. Recycling of clasts has been noted as a common process in subaerial and emergent/near surface phreatomagmatic eruptions, but has not been discussed much in the subaqueous literature (Houghton and Smith 1993; Rosseel et al. 2006). Although numerous textures have been used to distinguish magmatic from phreatomagmatic eruption products no one texture can be used in isolation (Table 2). A full interpretation of the textures displayed by glassy pyroclasts should include magma state prior to fragmentation, fragmentation, eruption mechanism(s), transport, deposition, environment and any subsequent post-depositional changes (Harpel et al. 2008).

4.5 Vesicle textures as a record of fragmentation mechanism

Vesicles textures are the product of a combination at least six processes: nucleation, diffusive growth, decompressive expansion, coalescence, collapse, deformation and escape (Schipper et al. 2010). The overall vesicularity of the deposits described here (25-60 vol.%) is comparable to
subaqueous to emergent (i.e. phreatomagmatic) basaltic deposits (10-60 vol.%) (Houghton and
Gonnermann 2008; Houghton and Schmincke 1989; Murtagh et al. 2011; Schipper et al. 2011;
Simpson and McPhie 2001). The dominance of coalescence and vesicle growth in the lapilli and
fluidal bombs is suggestive of decoupled gas within the magma (Schipper et al. 2011), rather
than continuous nucleation and exsolution.

The differences observed in vesicularity between the three grain size groups (ash, lapilli
and blocks/bombs) are clearly influenced by the size of vesicles that can be observed, and the
method of calculating vesicularity. The vesicularity of bombs and lapilli were calculated both in
the field and with image analysis using ImageJ, both methods are two dimensional, and
converted to three dimensional based on the representative distribution of three dimensional distributions. The vesicularity of fine ash was not
calculated as a vesicle percent, but rather a binary value of presence of vesicles in part due to the
small size and low abundance of vesicles at this grain size. Vesicle textures can be described as
young (pre-fragmentation) textures or mature (post-fragmentation) textures. Young textures are
small, sub-spherical and abundant vesicles. Rim to core vesicle coarsening is a sign of post-
fragmentation vesiculation in subaerial and subaqueous bombs (Moitra et al. 2013; Parcheta et
al. 2013; Schipper et al. 2011; Stovall et al. 2011). This mature texture results from a residence
time for of the melt in a shallow chamber or the conduit for gases to exsolve and be distributed
through the melt (Schipper et al. 2011). In the case of mature textures in pillow lavas, the
distribution of large coalesced vesicles is typical found at the center of the pillow, away from
rapidly cooling and apparently young vesicle textured rims.

The overall distribution of the vesicles in fluidal bombs indicates that they are not post-
fragmentation bubble textures, or at least the process of coalescence had commenced prior to
fragmentation as they are well distributed throughout the bombs. Smaller vesicles are also present, but a consistent alignment or distribution is absent, and thus no evidence of continued nucleation of vesicles after bomb formation. Stretched vesicles along the bomb margins may be ellipsoidal in morphology and represent deformation of pre-fragmentation vesicles during and after bomb formation. Vesicle textures in pillows and fluidal bombs can be compared to reveal the relative timing of vesicle coalescence to fragmentation. The pillows are early stage eruption products with rounded vesicles (pre-fragmentation) and including radial pipe vesicles and an inward coarsening of vesicle diameter (post-fragmentation), which are also preserved in pillow fragments.

Lapilli vesicle morphology and distribution is nearly identical to that of the fluidal bombs suggesting the vesicles of both grain sizes have the same pre-fragmentation origin. In very fine ash, those vesicles observed isolated within a particle and smaller than the fracture planes formed prior to fragmentation. The <50 μm size of fine ash particles studied precludes the preservation of vesicles larger than 100 μm. Those vesicles that are present, however, are indicative of pre-fragmentation vesiculation.

The similarity of vesicle coalescence and other textures between bomb and lapilli clasts suggests that similar processes were controlling vesicle formation in the breccia and lapilli tuff. However, a comparison of initial pillow lava vesicle textures with fluidal bombs and lapilli suggests a change in the behavior of magmatic gasses during the eruption. The vesicles in the bombs display increased coalescence relative to the uppermost pillow lava flows and minor (~5-10%) increase in vesicularity, indicating an increase in gas exsolution within the melt, and suggest that the bombs were formed by explosive magmatic gas expansion (Fig. 7). The fluidal morphology of the bombs also indicates ductile deformation during transport through the vent.
and the overlying water column, which is in agreement with a magmatic, rather than phreatomagmatic origin for the generation of the bombs. While fluidal bombs are observed in some phreatomagmatic deposits, they do not occur with the concentration observed at Askja or other subaqueous magmatic settings (Simpson and McPhie 2001). However, the more complex textures of the lapilli and ash indicate multiple fragmentation mechanisms were contributing to the formation of these finer particles including FCI and mechanical granulation (Fig.7).

5.0 Magma fragmentation at the onset of basaltic phreatomagmatic explosions

The kinetic disruption of a magma is accomplished in two main ways: ductile deformation of the melt and brittle deformation of the cooling glass/lava. Ductile, or inertial fragmentation, is the breakup of magma during decompression in the form of inertial stretching and breakup of the liquid magma (Houghton and Gonnermann, 2008; and references within). Basaltic magmatic explosions predominantly involve the ductile disruption of the melt through the nucleation and growth and buoyant rise of vesicles (Parfitt and Wilson 2009; Zimanowski et al. 2003). The fluidal texture of bombs, with elongate vesicles in the glassy rim and convolute vesicle morphologies is a result of the ductile deformation of magma driven by the expansion and coalescence of magmatic water (Büttner et al. 1999; Eissen et al. 2003; Kokelaar 1986; Mastin et al. 2009; Parcheta et al. 2013; Zimanowski and Büttner 2003; Zimanowski and Wohletz 2000). Vesicle morphologies and distributions are distinct in the pillow lavas and pillow lava fragments, relative to the later pyroclasts (fluidal bombs and lapilli), and suggest coalescence of magmatic gas bubbles prior to the formation of the pyroclasts but not during pillow extrusion. This accumulation of magmatic gas could lead to the initial formation of fluidal bombs and possibly some lapilli, generated by expansion of these bubbles (Fig. 7 & 8). There is, however, limited
evidence of ductile deformation preserved in the fine ash scale in the form of tube vesicles and rare fine ash with large vesicle walls preserved along fractures. This supports the evidence that magmatic gas expansion is recorded in the large polylobate vesicles representing existing degassing pathways, and not nucleation of new vesicles.

While it is reasonable to indicate the onset of magmatic gas expansion driven explosivity in these deposits it is exceedingly difficult to identify when, if at all, the magmatic gas expansion stops. Rather, the fragmentation mechanism that dominates pyroclast formation changes, and may then mask the signature of magmatic fragmentation. The polylobate highly coalesced vesicles of are also present in the lapilli tuff, but the influence of magmatic fragmentation becomes less evident with the rapid decrease in fluidal bombs within a meter or so of the top of the breccia, suggesting a more effective fragmentation mechanism.

Brittle fragmentation of magma occurs when the material fails as a solid. In order for liquid magma to deform in a brittle fashion the strain rate must be high enough to prevent liquid relaxation of the melt (Büttner et al. 2002; Büttner et al. 1999; Dellino et al. 2001; Zimanowski et al. 2003). Fragmentation of basaltic magma by brittle processes include: FCI, quench granulation and other mechanical fracture through impact upon landing or transportation (Maicher et al. 2000). Most studies that distinguish between phreatomagmatic and magmatic fragmentation focus on the fine ash grain size fraction (<64 μm) as it records the most efficient fragmentation mechanism involved in the creation of the deposit, i.e. the mechanism that requires the greatest energy (Büttner et al. 1999; Dellino and La Vope 1996; Durig et al. 2012; Heiken 1971; Mattsson and Tripoli 2011; Zimanowski et al. 2003). Phreatomagmatic explosions driven by FCI occur where vapor is produced through the rapid heating of the water interacting with the surface of the melt. This vapor film must be disrupted to bring the melt in direct contact
with the water. The disruption of the vapor film can be an internal or external process, where changes in the system, including other mechanisms of melt fragmentation, can initiate FCI explosions. (Kokelaar 1986; Schipper et al. 2013; Wohletz 1986; Wohletz 2003; Zimanowski and Büttner 2003; Zimanowski and Wohletz 2000). The resulting explosion can then create pressure variations and fragment country rock or cooling crusts and result in the exposure of fresh magma to the system. The violence of these interactions produces deposits that are characterized by lithic blocks and abundant fine ash. Disruption of melt by FCI shockwaves can result in the rapid depressurization of a degassing melt and encourage magmatic explosivity. Similarly magmatic explosions can engender the formation of a fuel coolant premix and enable a phreatomagmatic interaction. The dynamic interplay of pressure, heat and coolant can result in a feedback loop where one or both of these fragmentation mechanisms may engender the conditions required to trigger the other. Simultaneously, both of these mechanisms result in the exposure of new melt which subsequently cools and contracts resulting in quench granulation. This complex interplay of magma fragmentation mechanisms only highlights the challenge of interpreting sequences like those at Austurfjöll.

Quench granulation is due to contraction during cooling and the brittle failure of the outer contracted layers of melt that is accentuated in wet environments (Cas et al. 2003; Schipper et al. 2010; Wohletz 1986; Wohletz 2003). This secondary fracture occurs at a variety of scales including jig-saw fit bombs, angular blocks and chip and needle-shaped fine ash particles. Lapilli that have incomplete sideromelane rims reflect the brittle fragmentation of cooled melt. Particles associated with this type of fragmentation are typically dominated by wholly sideromelane clasts. Quench granulation only releases 10% of the thermal energy available (Schmid et al. 2010) and creates larger particles (coarse ash and lapilli) than FCI. Additional fragmentation can
occur through clast to clast interaction, impact with the ground and during transportation. The preservation of large fluidal clasts and intact glassy margins on lapilli and bombs indicate that these secondary fragmentation mechanisms, including post-depositional transport, are limited. Fine ash grain textures also support this lack of transportation through the preservation of fragile spines and limited grain abrasion.

The role of ductile deformation in FCI explosions is poorly understood. Ductilely deformed clasts are observed in limited quantities in phreatomagmatic deposits, including limu o Pele (Clague et al. 2009; Maicher et al. 2000; Schipper and White 2010) and fluidal bombs (Mattsson and Tripoli 2011; Ross et al. 2011). The formation of limu o Pele involves the ductile deformation of melt as a result of trapping external water within the melt. The trapped water rapidly expands as vapor stretching the melt into a thin film (bubble wall), in a processes documented in littoral, submarine and subglacial environments (Clague et al. 2009; Maicher et al. 2000; Schipper and White 2010). Limu o Pele are not a dominant feature within the Askja deposits (never more than 4 vol %), but are frequent enough (Fig. 9) to indicate that trapping of external water by molten magma did occur in this fully subaqueous environment, further indicating the complexity of subaqueous melt water interactions.

It is very important to note that none of these fragmentation processes occur in isolation, as each individual mechanism disrupts the magma and may enable the decompression of internal volatiles, increase the surface area for interaction with external water and disrupt insulating vapor films (Maicher et al. 2000) triggering other mechanisms of fragmentation enabling feedback loops between magmatic and phreatomagmatic explosions. Quench granulation, in particular, can occur in any wet eruptive environment and contributes to all subaqueous eruptions (Cas et al. 2003; Mastin et al. 2009; Schipper et al. 2010; Wohletz 1986; Wohletz 2003).
The interpretation of pillow, fluidal bomb, lapilli and fine ash particle textures from the three transitional sequences at Askja clearly reflect a complex interplay of several fragmentation mechanisms that evolve throughout the eruption sequence. The shape of clasts and fine particles reflect the ductile or brittle nature of these mechanisms. The interrelated nature of mechanisms of fragmentation results in the modification, overprinting and even destruction of earlier textural signatures of the fragmentation (Ersoy et al. 2006). It is therefore, critical to use multiple parameters, such as sedimentary structures, vesicularity, grain size and grain shape at multiple grain sizes to reconstruct the mechanisms of fragmentation for pyroclastic deposits generated in wet environments. For the sequences described here, we suggest that the evolution of the fragmentation mechanisms producing the deposits started with initial magmatic fragmentation in a subaqueous environment which then enabled more efficient FCI explosions. This progressive shift does not imply that magmatic fragmentation was shut down by the onset of phreatomagmatic activity, rather the more effective process rapidly dominated the production of pyroclasts with magmatic gas expansion becoming a subordinate process. At the same time fragmentation by mechanical process (dominantly quench granulation) and the entrapment of external water (limu o Pele) accompanied the more dominant fragmentation mechanisms (Fig. 10).

5.1 What triggers explosive activity in subaqueous eruptions?

Potential triggers for a transition from effusive to explosive activity in a subaqueous environment include: depressurization by a decrease in confining pressure, access/infiltration of water to the rising magma, and internal dynamics of the magma due to changes in the magma flux, volatile content or crystallization. In a glaciovolcanic setting a reduction of confining pressure can result
from a decrease in the overburden, such as water or ice or wet sediment due to the dynamic nature of the environment. Ice-confined lake water levels are highly dynamic and can drain slowly or rapidly during and after an eruption (Bjornsson 1985; Höskuldsson et al. 2006; Skilling et al. 2009; Smellie 2001; Smellie and Hole 1997). Decompression would also occur as a result of increasing the elevation of a vent relative to the water level through the construction of a massif (Edwards et al. 2009; Moore and Calk 1991; Zimanowski and Büttner 2003). A sudden collapse of the growing massif or collapse of the vent itself could also result in rapid decompression over the vent area (Fujibayashi and Sakai 2003; Scott et al. 2003; Wohletz 2003). The initiation of external water-magma interaction may further instigate decompression and facilitate further explosive activity (White 1996; Wohletz 1986; Wohletz 2002). This may be accomplished through the trapping of external water under an advancing flow over wet sediments, or between pillows, or the infiltration of water into the vent, or fractured lava flow crusts (Brown et al. 1994; Clague et al. 2009; Eissen et al. 2003; Maicher et al. 2000; Schipper and White 2010; White 1996; Zimanowski and Büttner 2002). In the case of the completely subaqueous sequence at Askja, ample volumes of water are available for interaction with erupting magma indicating that the volume of water was not a limiting variable for triggering the explosions. The presence of effusive pillow lavas during the early phase of the eruption indicates that melt was interacting with abundant water, but conditions were not conducive for melt/water pre-mix generation and FCI explosions (Wohletz 2002; Zimanowski et al. 1997). The pillow fragment breccia indicates that the pillow lava was partially mechanically disrupted, likely through the onset of explosive magmatic activity which formed juvenile fluidal bombs that then progressively dominate the breccia up-section. Vesicle morphologies and their distribution in the fluidal bombs points to an increase in magmatic volatile expansion and accumulation of vesicles
through coalescence after pillow formation and during bomb formation. During the initial
explosive phase lapilli were also produced in small quantities to form the matrix of the breccia.
As the eruption continued lapilli became the dominant pyroclast size, producing a massive lapilli
tuff. This upward fining of the deposit, as expressed by the increase in ash presence and decrease
in outsized clasts and the accompanying increasing abundance of very fine blocky ash particles
indicates that conditions became more favorable for FCI explosions. The initial magmatic
fragmentation enabled the dynamic mingling of magma and water to enable FCI and increased
quench granulation. The threshold between passive and explosive fragmentation in these cases is
loosely constrained by laboratory scale experiments defining a range of the greatest potential for
explosive interaction, where the mass ratios of coolant to magma is between $1 > R > 0.1$ (Wohletz
2002). However, this mass ratio does not occur in isolation and the other variables, including
confining pressure, and magma viscosity have not been sufficiently investigated. In this case the
increased surface area to volume ratio of the 20-50 cm bombs needed to occur with sufficient
volume to maintain a mass ratio of water to magma below 1. Based on the 4-7 m of fluidal
bomb-bearing breccia it seems feasible that the ratio of heat to coolant in the resulting mix was
favorable to trigger a FCI explosion. This then suggest that explosive magmatic fragmentation
can facilitate explosive fuel coolant interactions that dominate pyroclast formation for the
remainder of the eruption. While not the only mechanism to instigate FCI explosions, this may
represent a common mechanism for FCI initiation. If this model is valid, one important question
still remains, namely what controlled the initial increase in magmatic gas expansion for the
Austurfjöll eruptions?

Variations of internal eruption dynamics could initiate magmatic explosive activity
through an increase in eruption rate (Clague et al. 2009; Fujibayashi and Sakai 2003), changes in
volatile content, or viscosity (composition or crystallization) (Fowler et al. 2002; Wohletz 2003). The abundance of crystals within a melt will also directly affect the gross vesicularity and play a role in the potential explosivity of a melt (Houghton and Gonnermann 2008).

The presence of textures reflecting magmatic gas expansion and coalescence in the Austurfjöll deposits indicates that internal volatiles play a critical role in the first stages of fragmentation, and thus it is reasonable to consider internal drivers for the initiation of explosivity, such as eruption rate. The presence of pillow lavas of Pl2 type at the base of the Austurfjöll sequences indicates that effusion occurred at a higher rate than would form typical (i.e. Pl1) pillow lava forms. Deformed sideromelane glass quenched particles and elongated vesicles on clast rims in the overlying breccias/lapilli tuffs suggest a high strain rate that is also associated with a high eruption rate (Parcheta et al. 2013). This may suggest that the onset of explosivity coincided with an increased eruption rate from pillowed lavas to magmatic gas driven jetting of magma globules into the water column. Other internal factors such as melt viscosity and volatile saturation pressures do not seem to change dramatically between the pillows and the bombs. The crystal content of the lapilli and bomb samples is below 10 vol.% This suggests that the formation of crystals is not a significant contributor behavior of the melt. Additionally the chemistry of the pillows and clastic samples shows a high degree of internal consistency.

Alternatively, the shift in eruptive behavior may have been due to factors external to the melt where the increase in internal volatile expansion and coalescence between the pillow lavas and the fluidal bombs could have been the result of decompression from a reduction of confining pressure over the vent. Investigations of glaciovolcanic deposits have sought geologic textures that preserve the evidence of rapid syn-eruptive decompression through environmental changes,
and suggest that dramatic changes in bulk vesicularity may be a key to identifying this process (Höskuldsson et al. 2006). The first fluidal bombs at Austurfjöll have different morphology and distribution of vesicles from the underlying lavas, reflecting an increase in vesicle coalescence, not an increase in nucleation as might be expected during a decompression event. However, there is geologic evidence within nearby areas of Austurfjöll massif for voluminous drainage of water, as indicated by deeply eroded channels in similar lapilli tuffs that are infilled with stream flow and debris flow deposits. Such a large drainage event may have rapidly decreased the lake level volume, resulting in a rapid pressure change over the massif. The timing and duration of such an event is not well constrained, but at least one drainage event is stratigraphically correlated within the same eruptive unit as the NG transitional sequence (Graettinger unpublished data). Large ice sheets like would have been present at Askja are less susceptible to rapid drainage events than thinner, more localized ice bodies; however, the volume of water drained may not need to be significant to influence eruptive conditions of an actively degassing magma, particularly if the eruption rate was already high as evidenced by the presence of P12 lavas.

The internal compositional and textural consistency of the sequences at Askja suggests that there was little change in melt properties during the eruption of these deposits. While a change in mass flux at the vent may be responsible for the onset of magmatic gas decompression at all three sites, in similar fashions, it seems more likely that environmental conditions would produce such similar processes at different vents. Drainage events are frequent at glaciovolcanic centers (Bennett et al. 2006; Carrivick et al. 2004; Gudmundsson et al. 1997; Höskuldsson et al. 2006), and are a likely the strongest candidate to trigger the onset of explosive activity at an actively effusing vent.
5.2 Eruption Style

The discussion of eruption mechanics in fully subaqueous environments is complicated by the terminology, particularly with regard to comparisons that are often made with subaerial eruption styles. Comparisons with Strombolian (Clague and Davis 2003; Clague et al. 2009; Deardorff et al. 2011; Head and Wilson 2003; Schipper et al. 2011) and Hawaiian (Cas et al. 2003; Head and Wilson 2003; Schipper et al. 2010), eruption styles typically are focused on the decoupled or coupled nature of magmatic gas, but belies the underlying complexity of subaqueous fragmentation. Deep (ca. 1 km), gas-coupled submarine eruptions have also recently been given the term Poseidic (Schipper et al. 2010) to highlight some of the variations present in subaqueous eruptions. Surtseyan eruptions are considered to be the ‘wet’ equivalent of Strombolian eruptions, but the term is predominantly applied to emergent or limited water environments, not fully subaqueous systems (Brand and Clarke 2009; Skilling 2009; Sohn 1995; Sorrentino et al. 2011; White and Ross 2011).

Fluidal bombs have been used to suggest the occurrence of submarine basaltic fire fountaining at ocean islands (Simpson and McPhie 2001), but the nature of vesicles in the Austurfjöll deposits is more suggestive of decoupled gas, that is characteristic of Strombolian eruptions (Clague and Davis 2003; Clague et al. 2009; Polacci et al. 2008; Schipper et al. 2011; Schipper et al. 2010). The vesicularity of Hawaiian eruption deposits is typically high, and pyroclasts are dominated by ragged clasts with uniformly distributed vesicles, suggested that the gas bubbles are coupled to the magma during eruption and a more continuous eruption. Strombolian eruptions of basaltic magma have a variety of fluidal and ragged clasts are that are produced in a non-continuous ‘unsteady’ eruption, but occur as discrete eruptions, due to the decoupled gas (Houghton and Gonnermann 2008). Surtseyan eruptions can display discrete
bursts and continuous uprush behavior. The Askja deposits lack some of the more distinctive Surtseyan deposit characteristics including lithic blocks, bomb sags and stratigraphy indicative of pulsatory behavior. The sequences at Austurfjöll are predominantly massive with a gradual upward fining and weak bedding only in the upper meters of the larger deposits. This indicates a more continuous eruptive behavior resulting in continuous deposition.

The erosional history and complex overlapping facies of adjacent fissure eruptions at Askja make the identification of exact vent locations for each sequence very difficult. Without sufficient exposure vent position is estimated to be roughly located within the deposit itself, and therefore within 10-50 m of sample location based on the scope of the deposit and the lack of evidence for remobilization. Deposit volume is calculated from lateral extent, estimated by observation of the three-dimensional dissection of the deposit and from lithofacies mapping of DK, NG and RG. Original volume estimates are clearly approximate due to the degree of deposit overlap and erosion. The estimated volume of the individual deposits is between 0.0004-0.003 km³. Typical Strombolian eruptions and Icelandic fissure eruptions have extrusion rates between 10 and 100 m³/s (Parfitt and Wilson 2009). These explosive eruptive rates are also similar in range to the values estimated for subaqueous lobate lava flows (Griffiths and Fink 1992). Estimates for eruption duration can be established from these values to be minutes to a few hours for each sequence (Table 5).

Our model of the transition from effusion to explosion at Austurfjöll is based on the interpretation of the three deposits as representing a temporally continuous co-genetic sequence of deposits from a single vent and detailed textural study of the four major components (pillows, bombs, lapilli to coarse ash and fine ash).
We have suggested above that the first formation of fluidal bombs is the result of rapid extrusion of magma driven by internal volatiles, jetting the magma into the water column. The shear stress imparted on the surface of the magma exceeds the surface tension causing a separation into magma globules, forming the fluidal bombs (Cas et al. 2003; Head and Wilson 2003; Wohletz 2003). The presence of pillow fragments mixed with fluidal bombs suggests that the pillows were disrupted during the onset of explosivity, but the absence of frothy pillows or pillow fragments suggests that the transition occurred in the vent and not in a growing pillow tube. The coalescence of vesicles and vesicle size indicate decoupled volatile behavior (Clague and Davis 2003; Head and Wilson 2003; Schipper et al. 2011). The ejection of this first globule then exposes a greater surface area of magma to interact with external water. The bomb-bearing lapilli tuff is interpreted as representing the shift from subaqueous magmatic fragmentation to FCI fragmentation. The increased efficiency of the fragmentation is recorded in the overall decreasing grain size of the deposits through the increase in the proportion of lapilli and ash. The sequences described here would be insufficiently characterized by only one grain size faction due to the limitations of each particle type to record the interplay of fragmentation mechanisms observed through this more comprehensive textural study.

The interplay of phreatomagmatic fragmentation (FCI) with magmatic fragmentation is not unique to fully submerged eruptions (Houghton and Schmincke 1989; Skilling 2009; Solgevik et al. 2007; White 1996). However, the initiation of a phreatomagmatic eruption by a decoupled gas magmatic eruption has not yet been described in a completely subaqueous environment. Deposits preserving a magmatic trigger for FCI explosions at Askja likely do not represent an exclusive series of events, but instead represents the dynamic nature of subaqueous
explosive eruptions and reinforces the potential for feedback loops of basaltic magma fragmentation mechanisms.

6.0 Conclusion
Pyroclast textures in three subaqueous basaltic sequences from Askja reveal the interaction of magmatic and FCI fragmentation mechanisms as the eruption transitioned from effusive to explosive behavior. The identification of the signature of different fragmentation mechanisms in natural subaqueous phreatomagmatic eruptions remains a challenge. However, the comparison of textures in multiple grain sizes across important facies transitions as in this study can reveal subtle changes in internal volatile expansion and fragment cooling history as preserved in vesicle morphology, distribution and size as well as glass type and microlite abundances. By using an integrated approach it is possible to compensate for challenges such as textural overprinting and limited sedimentary structures. We propose an eruption history for the three sequences described here where the initial disruption of the effusively erupting magma by decoupled magmatic volatile expansion was the result of decompression that may have been the result of drainage or partial drainage of overlying water in the ice-confined lake. This magmatic explosive behavior subsequently enabled FCI, as well as minor trapping of external water and quench granulation. All of these fragmentation mechanisms influenced the final grain size distribution and pyroclast textures of the sequences. The initial disruption of the magma that was driven by volatile expansion is preserved in the form of the fluidal bombs up to 50 cm in diameter and the large, irregularly distributed, polylobate vesicles of the lapilli and bombs that were no present in the underlying pillows. The role of phreatomagmatic explosions is recorded predominantly in the fine ash fraction of the deposit in the form of blocky, vesicle free grains and the increase and
dominance of sideromelane dominated lapilli and fine ash up section. The combination of low efficiently magmatic fragmentation and FCI explosions in the same eruptive sequence highlights the complexity of magma water interactions in wet environments. Given the close genetic and spatial relationship between the pillows and clastic deposits we suggest that the deposits were produced through the continuous eruption of effusive to transitionally explosive behavior. The recognition of such transitional sequences is important as they provide evidence for controls on the onset of explosive activity in subaqueous environments. It is critical to continue to investigate the conditions and triggers of fuel coolant interactions to better model violent phreatomagmatic eruptions.

7.0 Acknowledgments

This work was made possible by a National Science Foundation grant to IPS, DG and AH. Our gratitude goes to Háskóli Íslands, NORVOLK and the Vatnajökull National Park, for field logistics and permits. Dickinson College is acknowledged for the use of the SEM and Robert Dean should be thanked for his assistance using the equipment. Field assistance from R. Wham, R. Lee, A. Lema and M. Ellis was invaluable. This manuscript was improved greatly by two anonymous reviewers.

8.0 References

Gregg TKP, Fink JH (1995) Quantification of submarine lava-flow morphology through analog experiments. Geology 23:73-76

Ross P-S, White JDL (2012) Quantification of vesicle characteristics in some diatreme-filling deposits and the explosivity levels of magma-water interactions within diatremes. Journal of Volcanology and Geothermal Research 245-246

Figure captions

Figure 1 Location of Askja, Iceland including locations of pillow lava, breccia to lapilli tuff sequences. The shaded area represents the field area, Austurfjöll. Sample sites are located in major gullies incised into the base of the glaciovolcanic sequence of Askja. Sample locations from north to south are Drekagil (DG), Nautagil (NG), and Rosagil (RG).

Figure 2 Overview of Drekagil sequence including field image, annotated sketch of sampling sites and stratigraphic log.

Figure 3 Overview of the Nautagil sequence including field image, annotated sketch of sampling sites, and stratigraphic log.

Figure 4 Overview of the Rosagil sequence including field image, annotated sketch of sampling sites, and stratigraphic log.
Figure 5 Comparison of the two dominant pillow lava facies from Austurfjöll. Schematics of the pillow form outlines highlight the regularity of Pl1 and the irregularity of Pl2 lavas.

Figure 6 Field images and schematic characterizations of outsized clasts found within the three sequences described at Askja. A) Image of a broken pillow clast displaying typical rind and vesicle textures of a pillow. B) A fluidal bomb displaying irregular shape and vesicle distribution. Sketches of idealized clasts include a pillow in cross-section, a fluidal bomb in cross-section and an angular block.

Figure 7 Stratigraphic overview of a typical effusive to explosive transitional deposit from Askja. Three grain sizes (blocks/bombs, lapilli, and fine ash) were analyzed for size, morphology, and vesicularity as they trend up section. Bombs are described by maximum clast diameter. Vesicularity of both bombs and lapilli are presented as average values for a stratigraphic layer. Vesicle morphology is presented as representative shapes from actual lapilli measured. The fine ash morphologies are presented as percents of relative abundance through the sequence.

Figure 8 Examples of lapilli and fluidal bomb morphologies and textures that reflect ductile fragmentation of the magma. Images on the right hand side are field images. Images on the left hand side are from a binocular microscope. A) Ductile structures in a lapillus quench crust. B) Large coalesced vesicles in a fluidal bomb. C) Fluidal crust structures preserved on a lapillus by surrounding matrix (indicated by yellow line). D) Convolute bomb shape and vesicles. E) Large coalesced bubbles interacting with the clast surface. F) Fluidal bomb with intact quench rind
Figure 9 SEM secondary electron images of example grain morphologies found in textural analysis of fine ash particles. Adhering particles and aggregate ash particles are common. Arrows are used to highlight features of interest. A) Blocky grain and (left) and fragile spine on margin of a vesicle influenced grain boundary (right) from DG. B) Tube vesicles from DG. C) Vesicles isolated within glassy ash particles from DG. Vesicles may intersect fracture surfaces they do not control the fracture shape. D) Limu o Pele from DG. E) A particle with vesicle-dominated fracture surfaces and fragile spines from NG. F) Ash particles dominated by vesicles From NG. G) Elongate bladed shaped vesicle free particles From DG. Note the micron scale crust flaking off the particle. H) Blocky particles exhibiting scalloped edges from NG. I) Chip and blocky shaped particles from NG. Note the stepped appearance of the conchoidal fracture.

Figure 10 Model of fragmentation mechanisms as they occur during the formation of the three transitional sequences at Askja. Solid lines represent relative dominance of a fragmentation style. Dotted lines indicate continued, but diminished fragmentation. The question mark indicates that the final position of magmatic fragmentation is an inference as the signature is muted by FCI activity by this stratigraphic level. The textures used to construct the model are described.
Table 1 XRF bulk rock major element analyses for basal pillows and clastic samples. The results show that there is little variability internally in the sequence.

<table>
<thead>
<tr>
<th></th>
<th>Nautagil</th>
<th></th>
<th></th>
<th>Drekagil</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basal Pillow</td>
<td>Breccia Fluidal Bomb</td>
<td>LT Lapilli clast</td>
<td>Basal Pillow</td>
<td>LT Fluidal bomb</td>
<td></td>
</tr>
<tr>
<td>wt %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>50.51</td>
<td>50.43</td>
<td>50.70</td>
<td>50.28</td>
<td>50.16</td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td>2.492</td>
<td>2.506</td>
<td>2.509</td>
<td>1.939</td>
<td>1.911</td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>13.22</td>
<td>13.23</td>
<td>13.24</td>
<td>14.35</td>
<td>14.06</td>
<td></td>
</tr>
<tr>
<td>FeOx</td>
<td>13.79</td>
<td>14.09</td>
<td>14.04</td>
<td>12.10</td>
<td>12.59</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.239</td>
<td>0.241</td>
<td>0.237</td>
<td>0.211</td>
<td>0.214</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>5.42</td>
<td>5.00</td>
<td>5.37</td>
<td>6.36</td>
<td>6.58</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>9.95</td>
<td>9.89</td>
<td>9.84</td>
<td>11.81</td>
<td>11.38</td>
<td></td>
</tr>
<tr>
<td>Na2O</td>
<td>2.56</td>
<td>2.58</td>
<td>2.59</td>
<td>2.33</td>
<td>2.23</td>
<td></td>
</tr>
<tr>
<td>K2O</td>
<td>0.48</td>
<td>0.48</td>
<td>0.49</td>
<td>0.31</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>P2O5</td>
<td>0.270</td>
<td>0.276</td>
<td>0.273</td>
<td>0.212</td>
<td>0.207</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>98.92</td>
<td>98.73</td>
<td>99.28</td>
<td>99.90</td>
<td>99.63</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 of parameters used for the distinction of magmatic vs. phreatomagmatic fragmentation of basaltic magma. Focus is placed on pyroclast textures and properties. Some references refer to more evolved melts. Relevant details on the glassy clasts at Askja is included. One of the major challenges with all of the methods listed above is they focus on ‘ideal’ textural parameters from pure end member fragmentation, however, natural eruptions show variable eruptive styles and intensity even without the added variable of external water. In order to discriminate fragmentation methods in any natural deposit it is best to assume that fragmentation styles likely overlap and overprint their signature on the deposit under study. The greatest number of corroborating parameters (type of geologic evidence) then serves as the strongest argument for the dominant mechanism of fragmentation producing a deposit.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Magmatic</th>
<th>Phreatomagmatic</th>
<th>Grain size</th>
<th>References</th>
<th>Askja</th>
<th>Value as a discriminator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscularity (volume %)</td>
<td>>75%</td>
<td><40% (as low as 6%)</td>
<td>Lapilli and >64 mm</td>
<td>Brown et al. 1994; Cas et al. 2003; DeRosa 1999; Ersoy et al. 2006; Head and Wilson 2003; Houghton and Schmincke 1989; Houghton and Wilson 1989; Houghton and Gonnerman 2008; Lautze and Houghton 2007; Murtagh et al. 2011; Ross and White 2012</td>
<td>Variable 20-60%</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indicates whether a magma experienced degassing. Only records part of the degassing history. Degassing history can be further elucidated with the use of melt inclusion data and volatile analyses.</td>
</tr>
<tr>
<td>Lithic presence</td>
<td>Low to none</td>
<td>Typically high</td>
<td>Lapilli and >64 mm</td>
<td>Ersoy et al. 2006; Houghton and Schmincke 1989; Mutag et al. 2011; Ross and White 2012; Sohn 1995; Walker and Crossdale 1971</td>
<td>Less than 1% of one of three deposits</td>
<td>Moderate to High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The absence of lithic materials does not preclude the phreatomagmatic activity.</td>
</tr>
<tr>
<td>Sideromelane vs. tachylite</td>
<td>Dominated by tachylite</td>
<td>Dominated by sideromelane</td>
<td>Fine ash, coarse ash and lapilli</td>
<td>Heiken 1971; DeRosa 1999; Murtagh et al. 2011; Schipper et al. 2011a</td>
<td>Sideromelane dominated ash & lapilli</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Useful at some grain sizes and is dependent on preservation</td>
</tr>
<tr>
<td>Vesicle Number Density (VND)</td>
<td>10^2-10^4</td>
<td>10^-2 -10^-7</td>
<td>Ash and fine lapilli</td>
<td>Houghton and Gonnermann 2008; Lautz et al. 2012; Murtagh et al. 2011; Parcheta et al. 2013; Shea et al. 2010; Stovall et al. 2011</td>
<td>10^-2 reflecting a high degree of coalescence</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Recent studies suggest there is no correlation between these fragmentation mechanisms and VND (Ross and White 2012; Mattsson 2010).</td>
</tr>
<tr>
<td>Vesicle morphology</td>
<td>Spherical to polylobate or tube vesicles (variable sizes)</td>
<td>Spherical (small) BUT may preserve vesicle textures of a previously degassed magma.</td>
<td>Lapilli</td>
<td>Büttner et al. 1999; Houghton and Gonnerman 2008; Kokelaar 1986; Mastin et al. 2009; Miotra et al. 2013; Murtagh et al. 2011; Parcheta et al. 2013; Polacci et al. 2008; Stovall et al. 2011; Zimanowski et al. 2003</td>
<td>Polylobate (vesicles up to 1-2 cm), elongate at clast margins</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reflects the relative timing of degassing and cooling. As well as whether or not the gas is coupled with the magma. May indicate post-fragmentation degassing.</td>
</tr>
<tr>
<td>Vesicle textures at clast margins</td>
<td>Deformed vesicles at margins</td>
<td>Fractured with no trend in vesicles</td>
<td>>64 mm</td>
<td>Büttner et al. 1999; Eissen et al. 2003; Kokelaar 1986; Lautze and Houghton 2007; Mastin et al. 2009; Zimanowski and Büttner 2003; Zimanowski and Wohletz 2000</td>
<td>Deformed vesicles at margins</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indicates the timing of deformation relative to fragmentation.</td>
</tr>
<tr>
<td>Ash clast morphology</td>
<td>Fractures at margins controlled by vesicles</td>
<td>Blocky – no obvious control of vesicles on fracture position</td>
<td>Very fine ash</td>
<td>Büttner and Zimanowski 1998; Durig et al 2012; Dellino and Liotino 2002; Dellino et al., 2001; Dellino and La Volpe 1996; Heiken 1971; Mattson 2010; Mattox and Mangan 1997; Zimanowski et al 1997</td>
<td>Increasing blocky fine ash presence up section</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Can provide supporting information. May be over emphasized as an independent discriminator.</td>
</tr>
<tr>
<td>Juvenile Lapilli morphology</td>
<td>Fluidal, achnelith, ragged, blocky</td>
<td>Equant and blocky to fluidal (globules), accretionary lapilli</td>
<td>Lapilli</td>
<td>Lautze and Houghton 2007; Houghton and Gonnerman 2008; Houghton and Smith 1993; Mastin et al. 2009; Portner et al. 2010; Schipper et al. 2010a; Stovall et al. 2011</td>
<td>Narrow grain size (1-3 cm) and fluidal to equant.</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>While lapilli are the dominant grain size in basaltic magmatic and phreatomagmatic deposits. Not many studies have focused on</td>
</tr>
<tr>
<td>Juvenile bomb morphology</td>
<td>Diverse shapes, rough edges, breadcrumb textures, varieties of fluidal shapes (ribbon, cow pie etc.)</td>
<td>Cored bombs, Limited fluidal shapes Juvenile bombs are subordinate to finer fractions and lithic blocks.</td>
<td>>64 mm</td>
<td>Cas et al. 2003; Dellino et al. 2001; Heiken 1971; Houghton and Gonnermann 2008; Houghton and Nairn 1991; Houghton and Schmincke 1989; Houghton and Smith 1994; Mattio and Mangan 1997; Murtagh et al. 2011; Rosseel et al. 2006; Ross et al. 2011; Ross and White, 2012; Simpson and McPhie 2001; Sorrentino et al. 2011; Staudigel and Schmincke 1984; Walker and Croasdale 1971</td>
<td>Fluidal at bomb and lapilli scale Initially bomb dominant, lapilli dominates within a few meters</td>
<td>Low to Moderate</td>
</tr>
<tr>
<td>Crystal content (microlites by volume %)</td>
<td>0-50%</td>
<td>3-20%</td>
<td>Lapilli to ash</td>
<td>De Rossa 1999; Mattsson 2010; Murtagh et al. 2011; Ross and White 2012; Sable et al. 2006</td>
<td><15%</td>
<td>No free crystals</td>
</tr>
<tr>
<td>Deformation regime</td>
<td>Ductile (exceptions with high viscosity and high strain rate)</td>
<td>Brittle (time is less than viscous relaxation time)</td>
<td>All (perdominantly lapilli and ash)</td>
<td>Dürig et al. 2012a; Dürig et al. 2012b; Zimanowski et al. 2003; Mattsson 2010; Mattsson and Tripoli 2011</td>
<td>Shift of ductile dominated particles to brittle dominated particles</td>
<td>Low to Moderate</td>
</tr>
<tr>
<td>Abundance of very fine ash</td>
<td>Low to moderate</td>
<td>Moderate to high</td>
<td>Fine ash</td>
<td>Houghton and Nairn 1991; Zimanowski et al. 1997 FCI 1-10% of the deposit Dellino and La Volpe 1996</td>
<td>Increase in presence of fine ash</td>
<td>Moderate</td>
</tr>
<tr>
<td>Welding</td>
<td>Low to high</td>
<td>Low (emergent) to none (subaqueous)</td>
<td>Bombs</td>
<td>Rosseel et al. 2006</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>Limu o Pele</td>
<td>5%</td>
<td>5%</td>
<td>Fine ash to lapilli</td>
<td>Clague et al. 2009; Maicher et al. 2000; Schipper and White 2009; Schipper et al. 2013</td>
<td>Minor <4% in fine ash</td>
<td>Low</td>
</tr>
</tbody>
</table>
Table 1 XRF bulk rock major element analyses for basal pillows and clastic samples. The results show that there is little variability internally in the sequence.

<table>
<thead>
<tr>
<th></th>
<th>Nautagil Basal Pillow</th>
<th>Nautagil Breccia Fluidal Bomb</th>
<th>Nautagil LT Lapilli clast</th>
<th>Drekaqil Basal Pillow</th>
<th>Drekaqil LT Fluidal bomb</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>50.51</td>
<td>50.43</td>
<td>50.70</td>
<td>50.28</td>
<td>50.16</td>
</tr>
<tr>
<td>TiO2</td>
<td>2.492</td>
<td>2.506</td>
<td>2.509</td>
<td>1.939</td>
<td>1.911</td>
</tr>
<tr>
<td>Al2O3</td>
<td>13.22</td>
<td>13.23</td>
<td>13.24</td>
<td>14.35</td>
<td>14.06</td>
</tr>
<tr>
<td>FeOx</td>
<td>13.79</td>
<td>14.09</td>
<td>14.04</td>
<td>12.10</td>
<td>12.59</td>
</tr>
<tr>
<td>MnO</td>
<td>0.239</td>
<td>0.241</td>
<td>0.237</td>
<td>0.211</td>
<td>0.214</td>
</tr>
<tr>
<td>MgO</td>
<td>5.42</td>
<td>5.00</td>
<td>5.37</td>
<td>6.36</td>
<td>6.58</td>
</tr>
<tr>
<td>CaO</td>
<td>9.95</td>
<td>9.89</td>
<td>9.84</td>
<td>11.81</td>
<td>11.38</td>
</tr>
<tr>
<td>Na2O</td>
<td>2.56</td>
<td>2.58</td>
<td>2.59</td>
<td>2.33</td>
<td>2.23</td>
</tr>
<tr>
<td>K2O</td>
<td>0.48</td>
<td>0.48</td>
<td>0.49</td>
<td>0.31</td>
<td>0.30</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.270</td>
<td>0.276</td>
<td>0.273</td>
<td>0.212</td>
<td>0.207</td>
</tr>
<tr>
<td>Total</td>
<td>98.92</td>
<td>98.73</td>
<td>99.28</td>
<td>99.90</td>
<td>99.63</td>
</tr>
</tbody>
</table>
Table 2 of parameters used for the distinction of magmatic vs. phreatomagmatic fragmentation of basaltic magma. Focus is placed on pyroclast textures and properties. Some references refer to more evolved melts. Relevant details on the glassy clasts at Askja is included. One of the major challenges with all of the methods listed above is they focus on ‘ideal’ textural parameters from pure end member fragmentation, however, natural eruptions show variable eruptive styles and intensity even without the added variable of external water. In order to discriminate fragmentation methods in any natural deposit it is best to assume that fragmentation styles likely overlap and overprint their signature on the deposit under study. The greatest number of corroborating parameters (type of geologic evidence) then serves as the strongest argument for the dominant mechanism of fragmentation producing a deposit.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Magmatic</th>
<th>Phreatomagmatic</th>
<th>Grain size</th>
<th>References</th>
<th>Askja</th>
<th>Value as a discriminator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscularity (volume %)</td>
<td>>75%</td>
<td><40% (as low as 6%)</td>
<td>Lapilli and >64 mm</td>
<td>Brown et al. 1994; Cas et al. 2003; DeRosa 1999; Ersoy et al. 2006; Head and Wilson 2003; Houghton and Schmincke 1989; Houghton and Wilson 1989; Houghton and Gonnerman 2008; Lautze and Houghton 2007; Murtagh et al. 2011; Ross and White 2012</td>
<td>Variable 20-60%</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indicates whether a magma experienced degassing. Only records part of the degassing history. Degassing history can be further elucidated with the use of melt inclusion data and volatile analyses.</td>
</tr>
<tr>
<td>Lithic presence</td>
<td>Low to none</td>
<td>Typically high</td>
<td>Lapilli and >64 mm</td>
<td>Ersoy et al. 2006; Houghton and Schmincke 1989; Mutaghi et al. 2011; Ross and White 2012; Sohn 1995; Walker and Crossdale 1971</td>
<td>Less than 1% of one of three deposits</td>
<td>Moderate to High</td>
</tr>
<tr>
<td>Sideromelane vs. tachylite</td>
<td>Dominated by tachylite</td>
<td>Dominated by sideromelane</td>
<td>Fine ash, coarse ash and lapilli</td>
<td>Heiken 1971; DeRosa 1999; Murtagh et al. 2011; Schipper et al. 2011a</td>
<td>Sideromelane dominated ash & lapilli</td>
<td>Moderate</td>
</tr>
<tr>
<td>Viscosity Number Density (VND)</td>
<td>10^{-3}-10^{4}</td>
<td>10^{-6}-10^{7}</td>
<td>Ash and fine lapilli</td>
<td>Houghton and Gonnermann 2008; Lautz et al. 2012; Murtagh et al. 2011; Parcheta et al. 2013; Shea et al. 2010; Stovall et al. 2011</td>
<td>10' reflecting a high degree of coalescence</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Recent studies suggest there is no correlation between these fragmentation mechanisms and VND (Ross and White 2012; Mattsson 2010).</td>
</tr>
<tr>
<td>Vesicle morphology</td>
<td>Spherical to polylobate or tube vesicles (variable sizes)</td>
<td>Spherical (small) BUT may preserve vesicle textures of a previously degassed magma.</td>
<td>Lapilli</td>
<td>Büttner et al. 1999; Houghton and Gonnerman 2008; Kokelaar 1986; Mastin et al. 2009; Moitra et al. 2013; Murtagh et al. 2011; Parcheta et al. 2013; Polacci et al. 2008; Stovall et al. 2011; Zimanowski et al. 2003</td>
<td>Polylobate (vesicles up to 1-2 cm), elongate at clast margins</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reflects the relative timing of degassing and cooling. As well as whether or not the gas is coupled with the magma. May indicate post-fragmentation degassing.</td>
</tr>
<tr>
<td>Vesicle textures at clast margins</td>
<td>Deformed vesicles at margins</td>
<td>Fractured with no trend in vesicles</td>
<td>>64 mm</td>
<td>Büttner et al. 1999; Eissen et al. 2003; Kokelaar 1986; Lautze and Houghton 2007; Mastin et al. 2009; Zimanowski and Büttner 2003; Zimanowski and Wohletz 2000</td>
<td>Deformed vesicles at margins</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indicates the timing of deformation relative to fragmentation.</td>
</tr>
<tr>
<td>Ash clast morphology</td>
<td>Fractures at margins controlled by vesicles</td>
<td>Blocky – no obvious control of vesicles on fracture position</td>
<td>Very fine ash</td>
<td>Büttner and Zimanowski 1998; Durig et al. 2012; Dellino and Liotino 2002; Dellino et al., 2001; Dellino and La Volpe 1996; Heiken 1971; Mattson 2010; Mattox and Mangan 1997; Zimanowski et al 1997</td>
<td>Increasing blocky fine ash presence up section</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Can provide supporting information. May be over emphasized as an independent discriminator.</td>
</tr>
<tr>
<td>Juvenile Lapilli morphology</td>
<td>Fluidal, achelth, ragged, blocky</td>
<td>Equant and blocky to fluidal (globules), accretionary lapilli</td>
<td>Lapilli</td>
<td>Lautze and Houghton 2007; Houghton and Gonnerman 2008; Houghton and Smith 1993; Mastin et al. 2009; Portner et al. 2010; Schipper et al. 2010a; Stovall et al. 2011</td>
<td>Narrow grain size (1-3 cm) and fluidal to equant.</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>While lapilli are the dominant grain size in basaltic magmatic and phreatomagmatic deposits. Not many studies have focused on the grain shape of this size. Quench granulation produces blocky grain sizes in the</td>
</tr>
<tr>
<td>Juvenile bomb morphology</td>
<td>Cored bombs, Limited fluidal shapes Juvenile bombs are subordinate to finer fractions and lithic blocks.</td>
<td>>64 mm</td>
<td>Cas et al. 2003; Dellino et al. 2001; Heiken 1971; Houghton and Gonnermann 2008; Houghton and Nairn 1991; Houghton and Schmincke 1989; Houghton and Smith 1994; Mattox and Mangun 1997; Murtagh et al. 2011; Rosseel et al. 2006; Ross et al. 2011; Ross and White, 2012; Simpson and McPhie 2001; Sorrentino et al. 2011; Staudigel and Schmincke 1984; Walker and Croasdale 1971</td>
<td>Fluidal at bomb and lapilli scale Initially bomb dominant, lapilli dominates within a few meters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low to Moderate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Useful in context and concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal content (microlites by volume %)</td>
<td>0-50%</td>
<td>3-20%</td>
<td>Lapilli to ash</td>
<td>De Rossa 1999; Mattsson 2010; Murtagh et al. 2011; Ross and White 2012; Sable et al. 2006</td>
<td><15% No free crystals</td>
<td>Low</td>
</tr>
<tr>
<td>Higher crystalinity is typically associated with greater cooling time (slower ascent rates, slower decompression), but no trends have been observed indicative of these fragmentation processes. Free crystals may be indicative of more efficient fragmentation according to DeRosa (1999).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deformation regime</td>
<td>Ductile (exceptions with high viscosity and high strain rate)</td>
<td>Brittle (time is less than viscous relaxation time)</td>
<td>All (perdominantly lapilli and ash)</td>
<td>Dürig et al. 2012a; Dürig et al. 2012b; Zimanowski et al. 2003; Mattsson 2010; Mattsson and Tripoli 2011</td>
<td>Shift of ductile dominated particles to brittle dominated particles</td>
<td>Low to Moderate</td>
</tr>
<tr>
<td>Indicates rate of strain relative to viscosity of a fluid. In basaltic fluids FCI explosions occur at a higher rate than internal gas expansion. Dependent on rate of eruption, vent geometries and fluid viscosity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abundance of very fine ash</td>
<td>Low to moderate</td>
<td>Moderate to high</td>
<td>Fine ash</td>
<td>Houghton and Nairn 1991; Zimanowski et al. 1997; FCI 1-10% of the deposit Dellino and La Volpe 1996</td>
<td>Increase in presence of fine ash</td>
<td>Moderate</td>
</tr>
<tr>
<td>Useful when stratigraphy is available. The presence of finer grain sizes indicates the efficiency of fragmentation. In FCI only a small portion of the material is actively involved in the explosion to reflect this efficiency.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welding</td>
<td>Low to high</td>
<td>Low (emergent) to none (subaqueous)</td>
<td>Bombs</td>
<td>Rosseel et al. 2006</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>Only when present. The absence of welding does not exclude magmatic fragmentation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limu o Pele</td>
<td>5%</td>
<td>5%</td>
<td>Fine ash to lapilli</td>
<td>Clague et al. 2009; Maicher et al. 2000; Schipper and White 2009; Schipper et al. 2013</td>
<td>Minor <4% in fine ash</td>
<td>Low</td>
</tr>
<tr>
<td>The presence of limu oPele indicates the presence of water, but the significance as it relates to the nature of fragmentation is yet unknown (Schipper et al. 2013).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3(f). A detailed geological cross-section showing the stratigraphic layers and their corresponding lithofacies. The layers include:

- **J**: Bedded lapilli tuff
- **I**: Lapilli tuff, development of weak bedding
- **H**: Pillow breccia
- **G**: Bomb breccia

The scale on the left indicates a height of 35 m. The geological map in the bottom left highlights the locations of At and J.
<table>
<thead>
<tr>
<th>Structure</th>
<th>Outsized clasts</th>
<th>Lapilli</th>
<th>Fine ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidal bomb size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>34%</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>39%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>47%</td>
<td></td>
</tr>
<tr>
<td>Presence of outsized clasts</td>
<td>35%</td>
<td>38%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70%</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Vesicularity of outsized clasts</td>
<td>30%</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Lapilli vesicule morphology</td>
<td></td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Lapilli vesicularity</td>
<td>20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative abundance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocky ‘active’ particles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flakes, chips, needles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limu o pele</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillow size</td>
<td>38%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillow vesicles</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lapilli tuff
Breccia
Pillow lava
Interpretation of fragmentation mechanisms

Correlation of textures and interpretation

Quench fragmentation:
- flakes, chips, and needles in fine ash
- fractures in pillow rinds
- jig-saw fit bombs

External water-driven fragmentation:
- blocky ‘active’ particles
- limu o Pele
- fining upward
- increase in fine ash upsection

Magmatic fragmentation:
- fluidal bomb size
- fluidal bombs and lapilli
- deformed vesicles at fluidal bomb margins
- vesicle coalescence
- vesicles in fine ash

In situ nature of deposits:
- No traction current structures
- Fragile glassy projections
- Jig-saw fit bombs
- gradational lithofacies transitions