Tutor perspectives on the use of visuals in undergraduate assignments

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© 2013 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Tutor perspectives on the use of visuals in undergraduate assignments

Maria Leedham
maria.leedham@open.ac.uk

BAAL 2013
Aim

- Investigate the writing of L1 Chinese and L1 English students in three disciplines (Biological Sciences, Economics and Engineering).

Outline

1. Establish that there are differences in use of visuals
2. Investigate tutors’ views on this
3. Explore EAP tutors’ views
Background: Framing in academic literacies

Deficit approach

• student writing is ‘remedial’, ‘immature’ and contains ‘problems’ or ‘errors’ - especially L2 English student writing
 (Chen and Baker, 2010; Paquot, 2010)

 Vs.

Academic literacies approach

• writing within the academy is a set of social practices in which genre, context and culture are highly significant

• highlights ‘the variety and specificity of institutional practices, and students’ struggles to make sense of these’ (Lea and Street, 2006: 376).

• All student writers are in a constant struggle to establish the preferred ways of making meaning within their particular context (e.g. Lillis, 2006).
The data

The corpora

• British Academic Written English (BAWE) & beyond
• All proficient writing

• 58 texts from L1 Chinese students (107,000 words)
• 202 texts from L1 English students (429,000 words)

Interviews & questionnaires

• Interviews with 18 lecturers in Biological Sciences, Economics and Engineering in 6 UK universities
• Questionnaire responses from 200+ teachers of EAP (English for Academic Purposes)
• Interviews with students - ongoing

ESRC project number
RES-000-23-0800
A year 3 Engineering assignment
The role of maternal effect genes in the development of the nematode Caenorhabditis elegans

ABSTRACT

Caenorhabditis elegans (C. elegans) has been used as one of the favourite model organisms for developmental studies. Embryogenesis of C. elegans extensively relies on maternal effect genes for intrinsically asymmetric cell division and cell-cell interactions. In this review, the early embryogenesis of C. elegans, from the establishment of Anterior-Posterior polarity initiated by sperm entry to the asymmetrical cell divisions and different cell lineages induced by a variety of cell fate determinants is summarized. Some of the molecular mechanisms carried out by the crucial maternally expressed cell fate determinants underlying these processes are described.

INTRODUCTION

The C. elegans and its life cycle

Caenorhabditis elegans (C. elegans) is a small (~1 mm long) free-living soil nematode that has a predominantly hermaphroditic adult life. (Figure 1)

Figure 1 Adult C. elegans [1] Upper diagram: differential interference contrast image of an adult C. elegans. Lower diagram: anatomical structures of adult C. elegans (schematic drawing). Middle Left scale bar: 0.1 mm

The life cycle of C. elegans contains an embryonic stage, four larval stages (L1-L4) and an adult stage. (Figure 2) Molt (apoplosis, new cuticle formation, and ecdysis) takes place at the end of each larval stage. Under certain external conditions such as starvation, a non-growing stage, dauer larvae, may form through a facultative, reversible, arrest at the lethargus in the second of four cuticle molts. The life cycle is about 2 to 3 weeks. Each

Introduction

The potential of Caenorhabditis elegans as a model organism for the study of embryology emerged in the 1970s (Brenner, 1974). This free-living soil nematode is ideal for studying in the laboratory as it has a rapid period of embryogenesis (16 hours) and each worm has an invariant cell lineage, with exactly 959 somatic cells in the adult, which can be easily traced during development through the transparent cuticle (Sulston & Horvitz, 1977).

C. elegans is a small roundworm, approximately 1 mm long, that lives for 2-3 weeks and can be fed on Escherichia coli, which allows large numbers to be conveniently raised in a Petri dish. The predominant adult form is hermaphroditic, containing both sperm and eggs and therefore reproduction is rapid, either by self-fertilization or by cross-fertilization with the rare males.

The genetics for C. elegans is advancing rapidly. It has a small genome at \(8 \times 10^9\) bp and relatively few genes for a eukaryote – around 17,500. It was the first multicellular organism for which the genome was completely sequenced (C. elegans Sequencing Consortium 1998) and approximately 1,000 C. elegans proteins have already been matched to homologous human gene transcripts (Lai et al., 2000). Specific mutants may be produced by targeted deletion through transposon insertion or mutagens. Embryos may be manipulated by transformation or injection with transgenes and marker proteins such as green fluorescent protein (GFP) are easily visualised in the transparent embryos. RNA interference (RNAi) is a particularly useful technique for studying maternal effect genes by eliminating the expression of specific maternal or zygotic genes in offspring.

Reproduction

In hermaphroditic worms, fertilization occurs in the spermatheca – an organ where the sperm is stored – when mature oocytes pass from the ovary towards the vulva (Fig 1A–B). The point of sperm entry determines the posterior end of the embryo. After fertilization, a rigid, ovold-shaped chitin eggshell called the chorion is made (Kemphues & Strome, 1997) and the long axis of this ovold is termed the anteroposterior (alp) axis of the embryo.
Bulleted lists vs. connected prose in Economics

Question 2b
Interpretation of results (equations 4 and 5 appendix 2.)
The coefficient on class attendance is 0.13, which implies that holding all other variables constant, if you increase class attendance by 1 unit (1% increase in class attendance in a year), then the exam mark will increase by 0.13 units (0.13% increase in your mark). The coefficient on lecture attendance is 0.06, meaning holding all other variables constant, attending 1 more lecture will increase your mark by 0.06%. The coefficient on revision lecture attendance is slightly surprising, at 0.04, implying that by attending 1 more revision lecture, your mark will increase by 0.04%. The intercept can be interpreted to mean that if you attended no classes, revision or standard lectures, you would score 49.33%.

Tests shown in appendix 2.
The coefficient on class attendance was significant at the 0.01% level implying that in the multiple regression models, class attendance has a significant impact on exam mark. The coefficient on lecture attendance however was not significant, even at the 10% level, implying perhaps that lecture attendance does not have a significant impact in a multivariate framework. However, lecture attendance does appear to have a reasonably high correlation with class attendance, so the regression might be suffering from multicollinearity, which has made the result not significant. However, multicollinearity must be occurring with another factor being ‘helpful’ for it to have a negative impact on the regression. The coefficient on revision lecture attendance was significant up to the 1% level, thus implying that while we can be fairly sure that revision lectures have a significantly negative impact, it is due to the fact that the null hypothesis is indeed correct (type I error) and that the result is not significant.

The F-test for the joint explanatory power of the independent variables yielded an F-statistic of 13.97. This is significant at the 0.01% level as it exceeds the critical value of 3.78. Hence we can reject the null hypothesis given in the appendix. This means that the explanatory variables have made a significant joint contribution to exam performance.

Question 3
To investigate whether there are differences in performance between the sub-sample of 2002 students and previous year’s students I have created intercept dummy variables and added them to the original equation, as shown by equations 1 and 2 in appendix 3. The first equation is known as the restricted equation, as opposed to the unrestricted model in equation 2, because it imposes the F-test null hypothesis (see hypothesis 4, appendix 2) on equation 2. Hence in equation 2, the intercept is allowed to vary whereas it is not allowed to vary in equation 1 and is assumed to be constant in all years.

Interpretation of the coefficients
The intercept in equation 3 can be interpreted as before, meaning that if you attended no lectures and had no A’s at A level, you would score 56.97. This is slightly nonsensical in the sense that you would not have got onto the course if you did not score at least an A at A level. The coefficient of this could be the student who attended revision lectures and would spend more time revising topics mentioned in the revision lecture and ignoring topics not in the revision lecture. However, as the coefficient is small, we can safely omit it.

The t-score of about 0.000047 means that only 0.004% of the variation in the exam mark is explained by ATTR. Therefore it could be concluded that ATTR has such a trivial effect on exam performance that it could even be omitted.

Two-tailed t-test for the significance of the slope
H0: β = 0 (Proportion of revision lecture attended does not affect exam performance)
H1: β ≠ 0 (Proportion of revision lecture attended does affect exam performance)
Since the calculated t-value -0.13 is lower than the critical value of 1.2 t at 5% significance level with 370 d.f., we fail to reject H0 in this case and the conclusion is that revision lecture attendance does not affect exam performance.

(b) Multivariate Regression

\[
QTMARK = \beta_0 + \beta_1 \text{ABILITY} + \beta_2 \text{HSRQ} + \epsilon
\]
Modelling by OLS, we get
\[
QTMARK = 56.3257 + 0.165949 \text{ATTEN} + 0.545906 \text{ABILITY} + 0.417585 \text{HSRQ}
\]
Interpretation of the regression results:

1 Refer to “Construction of dummy variables for these quantitative variables” in the Appendix.
2 Refer to the Appendix for the binary regression results table.
3 Refer to the Appendix to find out the multivariate regression results table.
Methods

1. Extraction of corpus linguistic keywords and counts of visuals

2. Thematic analysis of lecturer interviews

3. Quantitative and qualitative analysis of questionnaire responses
Keywords relating to visuals and lists

<table>
<thead>
<tr>
<th>L1& discipline</th>
<th>Chi-Biol</th>
<th>Chi-Econ</th>
<th>Chi-Engin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected keywords</td>
<td>#</td>
<td>growth</td>
<td>#</td>
</tr>
<tr>
<td>table</td>
<td>curve</td>
<td>eq.</td>
<td></td>
</tr>
<tr>
<td>data</td>
<td>refer</td>
<td>according</td>
<td></td>
</tr>
<tr>
<td>equation</td>
<td>model</td>
<td>figure</td>
<td></td>
</tr>
<tr>
<td>figure</td>
<td>per</td>
<td></td>
<td></td>
</tr>
<tr>
<td>graph</td>
<td>output</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A word which is *positively* key occurs *more* often than would be expected by chance in comparison with the reference corpus.
Keywords relating to visuals and lists

Biology
• All "Phases" are labeled on the graph. The curve of the Exponential Phase was straight, though some point lay outside this best straight line of fit (0041a).

Economics
• Actually the total loss resulting from the lower monopoly output (Q M) is the grey triangle. The part of the grey triangle above P C is the loss of consumer surplus (6008q).

Engineering
• According to the program and refer to the figure 4.1.1, it is easy to find… (6107d).
Lists and ‘listlikes’

- Sales promotion:
 - Monthly promotions, according to customer sales and current interest
 - Discounts for bulk orders
 - Free P&P on orders over £25, encouraging bulk buying
 - Discounts for new businesses using us for the first time, on condition they use us for a minimum of two more orders

- Public relations:
 - User friendly website
 - Easy search tools within website, enabling you to find the exact bulb you want even for those engineering minded
 - Extensive “Help” and “FAQ” pages
 - 12hour guaranteed reply to email queries

Conclusions

The experiment yielded the following conclusions:

- The efficiency of a single stage centrifugal pump at high pump speed (3000 RPM) is better than it at low pump speed (2000 RPM).
- The input power with high pump speed increases faster than the one with low pump speed as discharge increases.
- The relationship between total head and discharge is not affected by pump speed, but higher pump speed provides higher total head.
Counts of visual and list items

<table>
<thead>
<tr>
<th></th>
<th>Tables</th>
<th>Figures</th>
<th>Lists</th>
<th>Listlikes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Biology</td>
<td>15****</td>
<td>25****</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Eng-Biology</td>
<td>5</td>
<td>13</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Chi-Economics</td>
<td>1</td>
<td>14****</td>
<td>2*</td>
<td>25****</td>
</tr>
<tr>
<td>Eng-Economics</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Chi-Engineering</td>
<td>10*</td>
<td>21</td>
<td>7</td>
<td>53****</td>
</tr>
<tr>
<td>Eng-Engineering</td>
<td>7</td>
<td>21</td>
<td>10</td>
<td>24</td>
</tr>
</tbody>
</table>

per 10,000 words

* p<.05 ** p<.01 **** p<.0001
Summary

• L1 Chinese students make significantly greater use of visuals and lists than L1 English students
• All BAWE assignments have been judged proficient
• = > suggests these are different, yet equally valued, ways of writing

Questions

• Are visuals and lists used as strategies to meet the challenge of producing extended pieces of writing in unfamiliar genres in L2?
• Perhaps some students are more visually-oriented?
• What do discipline tutors think of this greater use of visuals and lists?
• Do EAP tutors teach students how to use visuals and lists as strategies?
Interviews with lecturers 1

Importance of visuals

• Diagrams and formulae are ‘the spine of the essay’ (Economics)
• The ‘challenge’ is ‘to marry the diagrams with the text’ (Economics)
• Including visuals helps students gain better marks as it avoids having to describe and introducing errors (Biology)
• Marks for presentation may include the assessment of diagrams, tables and overall layout (Engineering).

Being concise

• Preference for ‘precision, incision, concision’ (Economics)
• ‘there’s never been a penalty for an essay that’s too short’ (Biology)
• Good writing is ‘clear’, ‘concise’; and dislike ‘verbosity’ (Engineering)
• British ss ‘use too many words’ - ‘don’t use 10 when you can use 5’.
• Proforma may say ‘include a table here’. May be given font sizes, margin size, line spacing, ‘so people can’t cram in words’.
Bulleted lists are ok

• …but the words have to be ‘particularly good’
• ‘easier to mark if bullet points’
• in exams, bullets are ‘ideal’ not paras. ‘no need to dress it up as an essay’. Be straightforward. (Engineering)
• ‘Gives visual emphasis’.
• ‘essay questions allow you to hide the things you don’t know.’ (Economics)

‘Maths-oriented’ and ‘journalistic’ students in Engineering and Economics

• 2 types of student – ‘maths-inclined student who would be happy putting bullet points instead of prose’ and students who are good at writing prose but ‘not as strong mathematically’.
• students see essays as a ‘refuge from problem-solving questions’ (Economics)
Yet...

- ‘graphic literacy’ is seldom taught in writing classes – *why?*

- Most applied linguists are ‘trained in the humanities, where words are central to disciplinary values and argumentation’
 [Johns (1998:183)]

- Tutors may ‘find themselves relying on disciplinary norms they are familiar with’
 [Gardner and Holmes, 2009: 251]

- There’s often a concentration on ‘linear text’
Survey of writing tutors

- 219 responses
- 87% of respondents teach in universities
- 60% have been teaching for 10 years +
- 50% + have a Masters degree in Applied Linguistics or Education
- 20% teach at foundation level, 36% UG in-sessional, 34% postgraduate
- Teach a mix of L1 English only, L2 English only, and both L1 and L2 English students
Teaching the use of visuals

EAP Tutors’ views

• ‘My students need to use visuals in their discipline(s).’ 90% agree
• ‘I teach my students how to include visuals within their academic texts.’ 72% agree
• ‘On the presessional course in the UK I taught on, lists were certainly discouraged and little explicit attention was paid to integrating visuals into writing.’
• ‘I have students do an ethnography of writing in their field, so that they can answer these questions.’
• ‘We are often quite detached from the disciplines because our students go into so many different spaces after completing foundation’
• ‘Some students are permitted to use these features and some not, so for this reason it is not sensible to teach them.’

• ‘The visuals are too complicated and student specific for me to know thoroughly and they know them better.’
• ‘I don’t know much about their individual subjects - just general knowledge or what I pick up from them.’
Implications for practice: Writing tutors

• remain open-minded as to what might be acceptable;
• include ‘graphic literacy’ in academic writing classes;
• research writing in their discipline (cf. Johns', 1997, plea for students to become researchers of their disciplines' practices);
• search corpora (e.g. BAWE, MICUSP) for particular discipline features;
• collect exemplars of the writing their students are asked to produce;
• move beyond lexicogrammatical considerations such as the acceptability of I or the choice of passive or active voice to considering assignments holistically
 (e.g. Is it ok to use a table to display results or should these be given in prose? Can the conclusion be presented as a bulleted list? If images are given, can a lengthy caption be included?);
References

• Leedham, M. (2009) ‘From traditional essay to ‘Ready Steady Cook’ presentation: reasons for innovative changes in assignments’ In Active Learning in HE.

