Copy the page URI to the clipboard
Stallard, Gwyneth M.
(2004).
DOI: https://doi.org/10.1112/S0024609303002698
URL: http://journals.cambridge.org/action/displayAbstra...
Abstract
It is known that, if is a hyperbolic rational function, then the Hausdorff, packing and box dimensions of the Julia set
are equal. It is also known that there is a family of hyperbolic transcendental meromorphic functions with infinitely many poles for which this result fails to be true. In this paper, new methods are used to show that there is a family of hyperbolic transcendental entire functions
,
, such that the box and packing dimensions of
are equal to two, even though as
the Hausdorff dimension of
tends to one, the lowest possible value for the Hausdorff dimension of the Julia set of a transcendental entire function.
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 3839
- Item Type
- Journal Item
- ISSN
- 1469-2120
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Depositing User
- Gwyneth Stallard