Geochronology and geochemistry of Mesoproterozoic granitoids in the Lhasa terrane, south Tibet: implications for the early evolution of the Lhasa terrane

How to cite:
Xu, Wang-Chun; Zhang, Hong-Fei; Harris, Nigel; Guo, Liang; Pan, Fa-Bin and Wang, Shuai (2013). Geochronology and geochemistry of Mesoproterozoic granitoids in the Lhasa terrane, south Tibet: implications for the early evolution of the Lhasa terrane. Precambrian Research, 236 pp. 46–58.

For guidance on citations see FAQs.

© 2013 Elsevier B. V.
Version: Accepted Manuscript
Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1016/j.precamres.2013.07.016

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Geochronology and geochemistry of Mesoproterozoic granitoids in the Lhasa terrane, south Tibet: Implications for the early evolution of Lhasa terrane

Wang-Chun Xu*, Hong-Fei Zhanga, Nigel Harrisb, Liang Guoa, Fa-Bin Pana, Shuai Wanga

a State Key Laboratory of Geological Processes and Mineral Resources, and Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, P.R. China

b Department of Environment, Earth and Ecosystems, The Open University, Milton Keynes, MK7 6AA, UK

A revised manuscript submitting to Precambrian Research for review

* Corresponding author. e-mail: wcxu2003@163.com, phone number: +86 27 67883001, Fax: +86 27 67883002
The early history of the Lhasa terrane remains poorly constrained due to the poor exposure of the Proterozoic rocks. We report here U-Pb zircon ages, geochemical and Hf isotopic data for granite gneisses and biotite gneisses from the Bomi Complex in the eastern part of the Lhasa terrane, south Tibet. Petrological and geochemical data suggest that the protoliths of the granite gneisses and the biotite gneisses could be granites and tonalites, respectively. LA-ICPMS U-Pb zircon analyses yielded ages of 1343±27 Ma (MSWD=0.3) and 1276±22 Ma (MSWD=0.4) for two granite gneisses, and a consistent age of ca. 1250 Ma for two biotite gneisses. These ages are interpreted as the magma crystallization time of both the gneisses protoliths, and thus the Bomi Complex represents the oldest rocks found in the Lhasa terrane. Our data indicate that the Mesoproterozoic detrital zircons from the Paleozoic metasedimentary rocks in the Lhasa terrane could be derived from the Lhasa terrane itself or the Tethyan Himalaya, rather than necessarily from the Albany-Fraser belt in the Australia. Geochemical characteristics show that the granite gneisses have an aluminous A-type granite affinity. The two granite gneisses dated in this study have zircon ε_{Hf}(t) values between +4.0 and +1.8 and between +2.6 and +0.2, respectively. They have identical two-stage Hf model ages of ~2.0 Ga. We suggest that the protoliths of the granite gneisses were produced by protracted high temperature partial melting of a felsic intracrustal source in an extensional setting. In contrast, the biotite gneisses have similar geochemical characteristics to those of calc-alkaline granitoids that probably formed in a subduction-related environment. Zircons from the two dated biotite gneisses have relatively higher ε_{Hf}(t) values of +8.1 to +3.6 and +10.5 to +5.7, respectively, indicating a juvenile mantle contribution to their magma source. Earlier magmatism at ~1343-1276 Ma may formed in a continental rift setting related to the final breakup of supercontinent Columbia, while subsequent magmatism of ~1250 Ma resulted from subduction of ocean slab during the assemblage
of Rodinia. We thus infer that the Bomi Complex was related to the contact zone between the Eastern Ghats Belt and the Archaean cratons in southeastern India during the Mesoproterozoic.

Keywords: Mesoproterozoic; tectonic evolution; aluminous A-type granite; Bomi Complex; Lhasa terrane

1. Introduction

It is widely assumed that the high elevation and thick crust of Tibet is largely a consequence of the Cenozoic collision and continued convergence between the Indian and Eurasian plates (Beck et al., 1995; de Sigoyer et al., 2000; Leech et al., 2005; Yin, 2006). The Lhasa terrane, the southern margin of the Eurasian continent, has received much attention as it records the history of both the pre-collision and the collision-related tectonism, magmatism and metamorphism (Zhu et al., 2011a; Zhang et al., 2012a). The Lhasa terrane is dominantly composed of Meso-Cenozoic igneous rocks and Paleozoic to Mesozoic sedimentary rocks with rare inliers of Precambrian basements (Yin and Harrison, 2000). Numerous studies of the Lhasa terrane that have been carried out over recent decades have focused largely on the Meso-Cenozoic igneous rocks, which have helped to develop an understanding of the Andean-type arc, India-Eurasian collision and related Cenozoic tectonic processes (Chung et al., 2005; Zhu et al., 2011b; and references therein). Although some of the previous studies referred to the Precambrian evolution (Dong et al., 2011; Guynn et al., 2011; Zhang et al., 2012a), the origin of the Lhasa terrane has remained enigmatic.

Understanding the origin of southern exposed edge of the Eurasian plate is crucial for unraveling the deformation history attending collision of Eurasia with India, and hence for reconstructing the position of the Lhasa terrane in the supercontinental assembly. Recently, Zhu et
al. (2011a) published a set of U-Pb age and Hf isotope data on detrital zircons from Paleozoic metasedimentary rocks in the Lhasa terrane. These data define a distinctive age population of ca.1170 Ma with $\varepsilon_{\text{Hf}}(t)$ values similar to coeval detrital zircons from Western Australia. In the absence of any recognised Mesoproterozoic rocks from the Lhasa terrane itself, the ca.1170 Ma detrital zircons were presumed to have been derived from the Albany-Fraser belt in southwest Australia (Zhu et al., 2011a). In the Paleozoic reconstruction, therefore, the Lhasa terrane was positioned at the northwestern margin of Australia proximal to Mesoproterozoic source regions. Thus the presence of Mesoproterozoic rocks in the Lhasa terrane has crucial implications for the geochemical and tectonic evolution of this block.

In the eastern Himalayan syntaxis, high-grade metamorphic rocks (Bomi Complex) are well exposed from rapid uplift and erosion (Burg et al., 1997). The Bomi Complex consists of orthogneisses, paragneisses, migmatites, and amphibolites. In this study, we carried out an integrated study of zircon U-Pb age, major and trace element geochemistry, and Lu-Hf isotope composition for the granite gneisses and biotite gneisses from the Bomi Complex. Our data show three episodes of Mesoproterozoic magmatism that may formed from a rift-related tectonic setting and a subduction-related process, respectively. The results can provide important insights into understanding the Mesoproterozoic tectonic evolution of the Lhasa terrane.

2. Geological setting and sample description

2.1. Regional geology

The eastern Himalayan syntaxis (EHS) is the eastern termination of the Himalaya collisional orogen (Fig.1). The EHS comprises three major tectono-stratigraphic units (Geng et al., 2006): (1) the Namche Barwa Complex of the Himalayan unit; (2) the Indus-Yarlung unit (IYS); and (3) the
Lhasa unit. The northwestern and southeastern contacts between the Namche Barwa Complex and
the Lhasa unit are marked by the sinistral Dongjiu-Miling fault and dextral Aniqiao fault,
respectively. The syntaxis is cut at its northeastern tip by the active dextral Jiali-Parlung fault (Burg
et al., 1997; Burg et al., 1998; Zhang et al., 2004).

The Namche Barwa Complex, the core of the EHS, includes layered quartz-feldspar-biotite
gneisses that are locally migmatised (Burg et al., 1998). According to recent geological mapping
(Geng et al., 2006), the Namche Barwa Complex can be subdivided into three subunits: Zhibai
Formation, Duoxiongla Complex and Paixiang Formation (Fig. 1), separated by ductile faults (Xu
et al., 2008). The Zhibai Formation comprises garnet-bearing gneisses containing sporadic boudins
of high-pressure granulite, with estimated peak metamorphic temperature-pressure conditions of
~850 °C and 14-18 kbar (Zhong and Ding, 1996; Liu and Zhong, 1997; Ding and Zhong, 1999;
Booth et al., 2009). The age of peak metamorphism for the high-pressure granulites has been
variably estimated from ~40 Ma to ~24 Ma (Ding et al., 2001; Liu et al., 2007; Xu et al., 2010;
Zhang et al., 2010b; Su et al., 2012). The Duoxiongla Complex comprises migmatitic gneisses and
orthogneisses with protolith ages ranging from 1.6 Ga to 1.8 Ga, as determined by U-Pb zircon
dating (Guo et al., 2008; Zhang et al., 2012c). The Paixiang Formation is composed of felsic
gneisses with subordinate diopside and forsterite-bearing marbles (Geng et al., 2006). All units from
the Namche Barwa Complex are intruded by Neogene granitoids with ages of ~13-3 Ma (Burg et al.,
1998; Ding et al., 2001; Booth et al., 2004).

The IYS unit separates the Himalaya unit (Indian plate) to the south from the Lhasa unit (Asian
plate) to the north (Fig. 1). It forms a continuous zone, 2-10 km wide, consisting of highly deformed
and metamorphosed sedimentary and ultramafic-mafic rocks, the latter representing a Neo-Tethyan
ophiolite (Geng et al., 2006). In the EHS, the geochemistry of the IYS mafic rocks indicate a
back-arc basin affinity (Geng et al., 2006), comparable to mafic rocks that crop out to the west at Xigaze and Zedang. Clinopyroxene 40Ar/39Ar dating for the IYS mafic rocks yielded a crystallization age of 200±4 Ma (Geng et al., 2004).

The Lhasa unit includes the Nyingchi Complex, the Bomi Complex, Paleozoic-Mesozoic cover strata, and abundant Mesozoic-Cenozoic granites (Fig.1). The Nyingchi Complex comprises gneisses, mica schists, marbles and minor granulites. These rocks have experienced upper amphibolite-facies metamorphism, locally rising to granulite grade (Zhang et al., 2010b; Zhang et al., 2010c). Detrital zircon age data suggest that the maximum depositional age of the Nyingchi Complex is no older than 490 Ma (Zhang et al., 2008; Dong et al., 2010). The Bomi Complex is exposed over the northern and eastern margin of the EHS, and has been interpreted to represent the Precambrian metamorphic basement of the Lhasa terrane (Dewey et al., 1988; Zheng et al., 2003). According to geological mapping (Zheng et al., 2003), the Bomi Complex can be divided into three subunits: (1) the lower Bomi Complex, consisting of gneisses, migmatites, mica schists, amphibolites and minor marbles; (2) the middle Bomi Complex that is composed of granite gneisses, biotite gneisses, migmatites and amphibolites; and (3) the upper Bomi Complex that is dominated by biotite gneisses. The metamorphic P-T conditions for the Bomi Complex were estimated at 3-8 kbar and 575-640 °C (Zheng et al., 2003) or at ~10.8 kbar and ~840 °C (Booth et al., 2009). Recently, using U-Pb dating on zircons from metamorphosed sedimentary and igneous rocks, Xu et al. (2013) established that the lower Bomi Complex is a quite young formation and represents a residual forearc basin, sourced from denudation of the Gangdese magmatic arc during the India-Asia continental collision. It was subducted during the Late Eocene and subjected to amphibolite-facies metamorphism at ~37 Ma.

The Lhasa unit granites were mostly emplaced during two intrusive episodes: ~133-110 Ma.
and ~66-57 Ma (Booth et al., 2004; Booth et al., 2009; Chiu et al., 2009; Zhang et al., 2010a; Guo et al., 2011). Chiu et al. (2009) suggested that the early Cretaceous granites probably formed in a post-collisional regime in response to the Late Jurassic-Early Cretaceous collision between the Qiangtang and Lhasa terrane. The Late Cretaceous-Paleocene granites resulted from northward Neo-Tethyan subduction during late Mesozoic time (Chiu et al., 2009; Guo et al., 2011). The Cretaceous-Paleocene granites were intruded by the later muscovite granites, two-mica granites and garnet-bearing granites, ranging from ~26-21 Ma in age (Ding et al., 2001; Chung et al., 2003; Booth et al., 2004; Zhang et al., 2010a; Guo et al., 2011; Pan et al., 2012). These Late Oligocene-Early Miocene granites resulted from partial melting of thickened lower crust (Chung et al., 2003; Zhang et al., 2010a).

2.2. Sample description and protolith discrimination

Samples used in this study were collected near the road between Bomi and Motuo (Fig.1). The granite gneisses in the Bomi Complex are generally light grey in color, whereas the biotite gneisses are dark grey (Fig.2). The granite gneisses are intruded by the biotite gneisses. They are variably migmatized and their leucosomes form concordant to nearly concordant veins. The leucosomes were avoided during sampling. Four granite gneiss samples were collected from the Bomi Complex. The granite gneisses are composed of K-feldspar (~30-40%), quartz (~25-30%), plagioclase (~10-15%), biotite (~13-15%), and muscovite (~3-5%), with minor amounts of zircon and Fe-Ti oxides (Fig.3a, b). The mineral composition of the gneisses suggests that their protolith is granite. Three biotite gneiss samples were interbedded with granite gneisses. The biotite gneisses contain quartz (~32-38 %), plagioclase (~30-35%), biotite (~20-25%), K-feldspar (~5-8%), muscovite (~1-2%), and accessory xenotime and zircon (Fig.3c, d). The mineral composition indicates that the
protoliths of the biotite gneisses are probably the intrusive rocks. Together with zircon morphology
and geochemical data (see below) indicate that the biotite gneiss is a meta-tonalite.

3. Analytical methods

3.1. Zircon U-Pb dating

Zircons were separated by heavy-liquid and magnetic methods and then purified by hand
picking under a binocular microscope. Zircon crystals were mounted in an epoxy disc and then were
polished. Cathodoluminescence (CL) imaging was carried out using a Quanta 400FEG
environmental scanning electron microscope equipped with an Oxford energy dispersive
spectroscopy system and a Gatan CL3+ detector at the State Key Laboratory of Continental
Dynamics, Northwest University, Xi’an, China. The operating conditions for the CL imaging were
at 15 kV and 20 nA. Typical CL images were obtained to characterize each grain in terms of size,
growth morphology, and internal structure, and were used to guide analytical spot selection for
U-Pb dating and Lu-Hf analysis.

Zircon U-Pb dating and trace element analyses were conducted synchronously by LA-ICP-MS
at the State Key Laboratory of Geological Processes and Mineral Resources (GPMR), China
University of Geosciences, Wuhan, China. Detailed operating conditions for the laser ablation
system and the ICP-MS instrument and data reduction are the same as description by Liu et al.
(2008a; 2010a; 2010b). Laser sampling was performed using a GeoLas 2005. An Agilent 7500a
ICP-MS instrument was used to acquire ion-signal intensities. Helium was applied as a carrier gas.
Argon was used as the make-up gas and mixed with the carrier gas via a T-connector before
entering the ICP. Nitrogen was added into the central gas flow (Ar+He) of the Ar plasma to
decrease the detection limit and improve precision (Hu et al., 2008). The laser spot is 32 μm in
diameter. Zircon 91500 was used as an external standard to normalize isotopic discrimination during analysis. NIST610 glass was used as an external standard to normalize U, Th, Pb and trace element concentrations of unknowns. The Agilent Chemstation was utilized for the acquisition of each individual analysis. Off-line selection and integration of background and analyte signals, and time-drift correction and quantitative calibration for trace element analyses and U-Pb dating were performed by ICPMSDataCal (Liu et al., 2010a). Uncertainties of individual analyses are reported at 1σ; weighted mean ages are calculated at 2σ level. Concordia diagrams and weighted mean calculations were made using Isoplot/Ex_ver3 (Ludwig, 2003).

3.2. Zircon Lu-Hf isotope analysis

In situ zircon Lu-Hf isotope measurements were undertaken using a Neptune Plus MC-ICP-MS (Thermo Fisher Scientific, Germany) in combination with a GeoLas 2005 excimer ArF laser ablation system (Lambda Physik, Göttingen, Germany) at the state Key Laboratory of GPMR. The energy density of laser ablation that was used in this study was 5.3 J cm\(^{-2}\). Helium was used as the carrier gas within the ablation cell and was merged with argon (makeup gas) after the ablation cell. A simple Y junction downstream from the sample cell allowed the addition of small amounts of nitrogen (4 ml min\(^{-1}\)) to the argon makeup gas flow (Hu et al., 2008). Compared to the standard arrangement, the addition of nitrogen in combination with the use of the newly designed X skimmer cone and Jet sample cone in the Neptune Plus improved the signal intensity of Hf, Yb and Lu by a factor of 5.3, 4.0 and 2.4, respectively. The laser spot is 44 μm in diameter. Analytical spots were located close to or on the top of LA-ICP-MS spots or in the same growth domain as inferred from CL images. Zircons 91500, GJ-1, Mud Tank and Temora were analyzed as the reference standard. Detailed operating conditions for the laser ablation system and the MC-ICP-MS
instrument and analytical method are the same as description by Hu et al. (2012).

The major limitation to accurate \textit{in situ} zircon Hf isotope determination by LA-MC-ICP-MS is the large isobaric interference from 176Yb and, to a much lesser extent, from 176Lu on 176Hf (Woodhead et al., 2004). It has been shown that the mass fractionation of Yb (β_{Yb}) is not constant over time and that the β_{Yb} that is obtained from the introduction of solutions is unsuitable for \textit{in situ} zircon measurements (Woodhead et al., 2004). The under- or over-estimation of the β_{Yb} value would undoubtedly affect the accurate correction of 176Yb and thus the determined 176Hf/177Hf ratio. We applied the directly obtained β_{Yb} value in real-time from the zircon sample itself. The 176Hf/177Hf and 173Yb/171Yb ratios were used to calculate the mass bias of Hf (β_{Hf}) and Yb (β_{Yb}), that were normalised to 179Hf/177Hf =0.7325 and 173Yb/171Yb=1.1248 (Blichert-Toft et al., 1997) using an exponential correction for mass bias. Interference of 176Yb on 176Hf was corrected by measuring the interference-free 173Yb isotope and using 176Yb/173Yb =0.7876 (McCulloch et al., 1977) to calculate 176Yb/177Hf. Similarly, the relatively minor interference of 176Lu on 176Hf was corrected by measuring the intensity of the interference-free 175Lu isotope and using the recommended 176Lu/175Lu =0.02656 (Blichert-Toft et al., 1997) to calculate 176Lu/177Hf. We used the mass bias of Yb (β_{Yb}) to calculate the mass fractionation of Lu because of their similar physicochemical properties. Off-line selection and integration of analyte signals, and mass bias calibrations were performed using \textit{ICPMSDataCal} (Liu et al., 2010a). The decay constant for 176Lu of 1.865×10^{-11} year^{-1} was adopted (Scherer et al., 2001). Initial 176Hf/177Hf ratio, denoted as $\varepsilon_{Hf}(t)$, is calculated relative to the chondritic reservoir with a 176Hf/177Hf ratio of 0.282772 and 176Lu/177Hf of 0.0332 (Blichert-Toft et al., 1997). Single-stage Hf model ages (T_{DM1}) are calculated relative to the depleted mantle, which is assumed to have a linear isotopic growth from 176Hf/177Hf=0.279718 at 4.55 Ga to 0.283250 at present, with 176Lu/177Hf ratio of 0.0384 (Vervoort and Blichert-Toft, 1999),
and two-stage Hf model ages (T_{DM2}) are calculated by assuming a mean $^{176}\text{Lu}^{177}\text{Hf}$ value of 0.015 for the average continental crust (Griffin et al., 2002).

3.3. Whole-rock major and trace element analyses

Major elements were measured by XRF at the State Key Laboratory of GPMR. The analytical uncertainty is <5%. Trace elements and rare earth elements (REE) were measured at the GPMR. About 50 mg of sample powders were digested by HF+HNO$_3$ in Teflon bombs and analyzed with an Agilent 7500a ICP-MS. The analytical precision is better than 5% for elements with concentrations >10 ppm, and less than 10% for those <10 ppm. The detailed analytical procedures are described in Liu et al. (2008b).

4. Results

4.1. Zircon U-Pb geochronology

Representative zircon CL images and U-Pb Concordia plots for zircons are shown in figures 4 and 5, respectively. LA-ICP-MS zircon U-Pb data are listed in the supplemental electronic data tables (Tables A).

4.1.1. Granite gneiss sample T844

Zircon crystals from the granite gneiss sample T844 are subhedral and transparent. They are 100-200 μm in length, with ratio of length to width ranging from 1.5:1 to 2:1. In CL images, zircon crystals commonly have oscillatory zoning (Fig. 4a), implying a magmatic genesis (Corfu et al., 2003). Many zircons exhibit an extremely narrow (<5 μm) outer rim with high CL intensity. The boundaries between the grey cores and the bright rims are often blurred. Twenty-one analyses were
performed on twenty-one zircon grains. All of the analyses have moderate Th (45-211 ppm) and U (56-541 ppm) contents, with relatively high Th/U ratios of 0.28-0.82, consistent with their magmatic origin. Most zircons in this sample are concordant and few exhibit significant lead loss on the Concordia diagram (Fig. 5a). The resulting upper intercept age is 1347±27 Ma (MSWD=0.6). These zircons yielded $^{207}\text{Pb}/^{206}\text{Pb}$ ages between 1220±91 Ma and 1391±63 Ma, with a weighted mean of 1343±27 Ma (MSWD=0.3), identical to the upper intercept age within analytical error. Thus we interpret the weighted mean age of 1343±27 Ma to represent magma crystallization age of the protolith of the granite gneiss.

4.1.2. Granite gneiss sample T1063

Most zircons from the granite gneiss sample T1063 show prismatic crystals of variable length, but generally with rounded terminations. They have grain sizes of 150-250 μm in length, with ratios of length to width ranging from 2:1 to 3:1. In CL images, these zircon crystals commonly have oscillatory zoning (Fig. 4b), implying their magmatic origin (Corfu et al., 2003). Discontinuous narrow metamorphic rims can also be observed around some grains (Fig. 4b). Twenty-five analyses were obtained on twenty-five zircon grains. All of the analyses have moderate Th (45-344 ppm) and U (53-534 ppm) contents, with relatively high Th/U ratios of 0.29-1.15, consistent with their magmatic origin. Most zircons in this sample are concordant and some exhibit weak lead loss on the Concordia diagram (Fig. 5b). The resulting upper intercept age is 1281±20 Ma (MSWD=0.5). These zircons yielded $^{207}\text{Pb}/^{206}\text{Pb}$ ages between 1231±45 Ma and 1377±67 Ma, with a weighted mean of 1276±22 Ma (MSWD=0.4), identical to the upper intercept age within analytical error. Thus we interpreted the weighted mean age of 1276±22 Ma to represent the magma crystallization age of the protolith of the granite gneiss.
4.1.3. Biotite gneiss sample T843

Zircon crystals from the biotite gneiss sample T843 are subhedral, transparent and light yellow in colour. They are 100-150 μm in length, with ratio of length to width ranging from 2:1 to 3:1. In CL images, these zircon crystals commonly have planar zoning (Fig. 4c), implying crystallization from an intermediate magma (Corfu et al., 2003). Discontinuous narrow light rims can be observed around some grains (Fig. 4c). Eighteen analyses were performed on eighteen zircon grains. The zircons have Th abundances of 367-2480 ppm, U abundances of 607-2520 ppm, and Th/U ratios of 0.60-1.10, consistent with their magmatic origin. Some zircons in this sample exhibit significant lead loss and are discordant on the Concordia diagram (Fig. 5c). The resulting upper intercept age is 1267 ± 15 Ma (MSWD=0.4). These zircons yielded $^{207}\text{Pb}/^{206}\text{Pb}$ ages between 1187 ± 43 Ma and 1277 ± 40 Ma, with a weighted mean of 1251 ± 16 Ma (MSWD=0.3), identical to the upper intercept age within analytical error. We interpreted the age of 1251 ± 16 Ma to represent the magma crystallization age of the protolith of the biotite gneiss.

4.1.4. Biotite gneiss sample T1062

Zircon crystals from the biotite gneiss sample T1062 show short to long prismatic crystals, but generally have rounded terminations. They have grain sizes of 200-350 μm in length, with ratios of length to width ranging from 2.5:1 to 4:1. In CL images, these zircon crystals commonly have weak planar zoning (Fig. 4d), implying crystallization from an intermediate magma (Corfu et al., 2003). Twenty-five analyses were done on twenty-five zircon grains. The zircons have Th of 84-2024 ppm, U of 225-1387 ppm, and Th/U ratios of 0.29-1.46. Most zircons in this sample exhibit significant lead loss and most analyses are discordant on the Concordia diagram (Fig. 5d). The resulting upper
intercept age is 1275±25 Ma (MSWD=1.1). These zircons yielded $^{207}\text{Pb}/^{206}\text{Pb}$ ages between 1181±39 Ma and 1367±50 Ma, with a weighted mean of 1250±18 Ma (MSWD=1.0), identical to the upper intercept age within analytical error. The age of 1250±18 Ma represents the magma crystallization age of the protolith of the biotite gneiss.

4.2. Whole-rock major and trace element compositions

Whole-rock major and trace element data for both the gneiss samples are given in the supplemental electronic data tables (Table B). The granite gneisses are highly siliceous, with SiO$_2$ ranging from 71.71% to 73.08%. They have high contents of alkalis, with K$_2$O=3.27-6.0% and Na$_2$O=3.12-4.91%, and total K$_2$O+Na$_2$O varies from 8.18% to 9.12%, with K$_2$O/Na$_2$O=0.67-1.92. They have low abundances of Fe$_2$O$_3$ (1.87-2.64%), MgO (0.48-0.82%), CaO (0.59-1.23%) and TiO$_2$ (0.21-0.26%). Al$_2$O$_3$ contents range from 14.02% to 15.05%. Mg numbers range from 37.0 to 43.7. The granite gneisses are weakly-strongly peraluminous with A/CNK values of 1.07-1.13. In Ab-An-Or ternary diagram (Fig.6), these gneisses plot in granite field. The major element composition of the granite gneisses is similar to that of aluminous A-type granite, as defined by King et al. (1997). The granite gneisses also share the features common to aluminous A-type granites in terms of trace element geochemistry. They are characterized by high 10,000×Ga/Al ratios ranging from 2.74 to 2.85, and all samples fall in field of A-type granites in discrimination diagrams (Fig.7). The sum of the Zr, Nb, Ce, and Y contents is greater than 370 ppm, of which the Zr contents are between ~205 ppm and ~373 ppm. The granite gneisses are also enriched in REE with total concentrations of 250-399 ppm. Chondrite-normalized REE patterns (Fig.8a) of these granite gneisses invariably show relative enrichment of light rare earth elements (LREE) with high $(\text{La/Yb})_N$ ratios of 11.3-30.0 and moderate negative Eu anomalies (Eu/Eu*=0.44-0.57). On the
primitive mantle-normalized spider diagram (Fig. 8b), they show negative anomalies of Ba, Nb, Ta, Sr, P and Ti, consistent with the patterns of A-type granites (Wu et al., 2002). Overall, these geochemical characteristics show that the protoliths of the granite gneisses are probably aluminous A-type granites.

In contrast to the granite gneisses, the biotite gneisses have lower SiO$_2$ (63.87-67.69%), K$_2$O (1.78-2.70%), total alkalis contents (K$_2$O+Na$_2$O=6.29-7.40%), and K$_2$O/Na$_2$O ratios (0.39-0.57). But they display higher Al$_2$O$_3$ (15.99-16.17%), Fe$_2$O$_3^{\text{tot}}$ (3.77-5.40%), MgO (1.72-3.19%), CaO (2.05-3.31%) and TiO$_2$ (0.43-0.56%). The biotite gneisses are weakly-strongly peraluminous with A/CNK values of 1.05-1.11. In Ab-An-Or ternary diagram (Fig.6), these biotite gneisses straddle the tonalite and the trondhjemite fields. The biotite gneisses have lower REE contents relative to the granite gneisses (Fig. 8a), but also display enrichment of LREE relative to heavy rare elements (HREE) with (La/Yb)$_N$ ratios of 10.1-28.3 and weakly negative Eu anomalies (Eu*/Eu=0.78-0.83).

On the primitive mantle-normalized spider diagram (Fig. 8b), they also show negative anomalies of Ba, Nb, Ta, Sr, P and Ti, but with higher Sr, P, Ti and lower Ba, Nb abundances compared with the granite gneisses.

4.3. Zircon Lu-Hf isotope compositions

Lu-Hf isotopic data for zircons from both the granite gneiss samples (T844, T1063) and the biotite gneiss samples (T843 and T1062) are given in the supplemental electronic data tables (Table C). Variations in Hf isotope ratios $\varepsilon_{\text{Hf}}(t)$ with their U-Pb ages (t) are plotted in Fig. 9.

Twelve Lu-Hf analyses were obtained on twelve dated zircon grains from the granite gneiss sample T844. 176Hf/177Hf ratios range from 0.282009 to 0.282086 (Table C). Assuming $t=1340$ Ma, the calculated $\varepsilon_{\text{Hf}}(t)$ values range from +1.8 to +4.0, with a weighted mean of +2.4±0.4
(MSWD=3.1). Their two-stage Hf model ages (T_{DM2}) range from 1858±49 Ma to 1993±59 Ma, with a weighted mean of 1960±24 Ma (MSWD=0.8) (Fig. 10a).

Twelve Lu-Hf analyses were obtained on twelve dated zircon grains from the granite gneiss sample T1063. They have $^{176}\text{Hf}/^{177}\text{Hf}$ ratios of 0.281995 to 0.282076 (Table C). Assuming $t=1280$ Ma, the calculated $\varepsilon_{Hf}(t)$ values range from +0.5 to +2.6, with a weighted mean of +1.2±0.5 (MSWD=4.5). Their T_{DM2} ages range from 1902±45 Ma to 2049±47 Ma, with a weighted mean of 1985±26 Ma (MSWD=1.1) (Fig. 10b).

Fourteen Lu-Hf analyses were undertaken on fourteen dated zircon grains from the biotite gneiss sample T843. $^{176}\text{Hf}/^{177}\text{Hf}$ ratios range from 0.282169 to 0.282261 (Table C). Assuming $t=1250$ Ma, the calculated $\varepsilon_{Hf}(t)$ values range from +3.5 to +8.4, with a weighted mean of +5.8±0.6 (MSWD=13). Their T_{DM2} ages range from 1511±43 Ma to 1763±29 Ma, with a weighted mean of 1675±37 Ma (MSWD=3.3) (Fig. 10c).

Twelve Lu-Hf analyses were undertaken on twelve dated zircon grains from the biotite gneiss sample T1062, of which one analysis has relatively higher $^{176}\text{Hf}/^{177}\text{Hf}$ ratio of 0.282359, corresponding to $\varepsilon_{Hf}(1250$ Ma) value of +10.5±0.3 and T_{DM2} age of 1383±38 Ma. The remaining analyses yielded $^{176}\text{Hf}/^{177}\text{Hf}$ ratios of 0.282176 to 0.282303 (Table C). Assuming $t=1250$ Ma, the calculated $\varepsilon_{Hf}(t)$ values range from +5.7 to +8.5, with a weighted mean of +6.7±0.6 (MSWD=6.8). Their T_{DM2} ages range from 1506±62 Ma to 1683±44 Ma, with a weighted mean of 1621±25 Ma (MSWD=1.7) (Fig. 10d).

5. Discussion

5.1. The oldest magmatism in the Lhasa terrane

The oldest published ages from basement rocks of the Lhasa terrane are from Neoproterozoic
gneisses (920-800 Ma) from the Amdo basement in northern Lhasa subterrane (Guynn et al., 2006; Guynn et al., 2011; Zhang et al., 2012b). In the central Lhasa subterrane, the reported oldest rocks are the ~787-748 Ma granitoids and gabbros from the just west of Nam Tso Lake (Hu et al., 2005); these have experienced an amphibolite-facies to granulite-facies metamorphism during the Late Neoproterozoic at ~680-650 Ma (Dong et al., 2011; Zhang et al., 2012a). In the present study, the zircons from both the granite gneiss samples (T844 and T1063) show oscillatory zoning, and high Th/U ratios, which are typical for magmatic zircons (Corfu et al., 2003). Furthermore, these zircons have relatively high REE contents and distinctly fractionated REE patterns, with enrichment in HREE and depletion of LREE (Fig. S1 in supplementary materials), typical of magmatic zircons (Hoskin and Schaltegger, 2003). The zircons in the two granite gneiss samples yielded weighted mean $^{207}\text{Pb}/^{206}\text{Pb}$ ages of 1343±27 Ma (2σ; MSWD=0.3) and 1276±22 Ma (2σ; MSWD=0.4), respectively, which are interpreted as the formation ages of the granite gneiss protoliths from the Bomi Complex. In addition, the zircons from two biotite gneiss samples (T843 and T1062) show planar zoning, high Th/U ratios, relatively high REE contents and distinctly fractionated REE patterns, with enrichment in HREE and depletion of LREE (Fig. S1 in supplementary materials), which are also typical for magmatic zircons (Corfu et al., 2003; Hoskin and Schaltegger, 2003). These zircons in the two biotite gneiss samples gave an identical weighted mean $^{207}\text{Pb}/^{206}\text{Pb}$ age of ~1250 Ma, interpreted as a third magmatic event in the Bomi Complex. Thus the Lhasa terrane has experienced at least three intrusive phases during the Mesoproterozoic. To our knowledge, both the granite gneisses and the biotite gneisses are the oldest rocks identified from the Lhasa terrane.

A great many detrital zircons with Mesoproterozoic ages have been reported from the Paleozoic metasedimentary rocks in the Lhasa terrane (Zhu et al., 2011a). These detrital zircons show a distinctive age population of ~1170 Ma. In the apparent absence of igneous zircons of
Mesoproterozoic age prior to this study these grains were assumed to be exotic, and specifically to have been derived from the Albany-Fraser belt in southwest Australia (Zhu et al., 2011a). In the light of the results of the present study, the Mesoproterozoic magmatism had happened in the Lhasa terrane. Though the magmatic zircon ages obtained in this study are older than the distinctive age population of ~1170 Ma, we suggest that these Mesoproterozoic detrital zircons could be derived (at least partly) from the Lhasa terrane itself. Recently, Gehrels et al. (2011) also published large numbers of detrital zircon ages from different portions of the Tibet-Himalayan orogen. Their results show that both the Lhasa terrane and Tethyan Himalaya have similar age distributions. Hence, the Lhasa terrane is interpreted to have originated along the northern margin of the India during Paleozoic time (Gehrels et al., 2011). This simplifies the paleographic reconstruction of the region because it obviates the necessity to displace the Lhasa terrane to the northwestern margin of Australia during the Paleozoic as proposed by Zhu et al. (2011a).

The Bomi Complex in the EHS could be comparable to the basement beneath the central Lhasa subterrane as has been previously assumed (Zhang et al., 2007b; Zhu et al., 2009; Zhu et al., 2011b). The central Lhasa subterrane, which is separated from the Gangdese subterrane by the Luobadui-Milashan Fault to the south and the northern Lhasa subterrane by the Shiquanhe-Nam Tso Mélange Zone to the north (Fig.12), is composed of a Carboniferous-Permian metasedimentary sequence, a lower Cretaceous volcano-sedimentary sequence and associated granitoids with minor Ordovician, Silurian, and Triassic limestones (Pan et al., 2004; Zhu et al., 2009; Zhu et al., 2011b) and rare Neoproterozoic basement (Hu et al., 2005; Dong et al., 2011; Zhang et al., 2012a). While the Gangdese and northern Lhasa subterrane is characterized by juvenile crust, the central Lhasa subterrane is assumed to represent a microcontinent underlain by Archean and Proterozoic basement (Zhu et al., 2009; Zhu et al., 2011b). This hypothesis is supported by the following four lines of
evidence. These are: (1) the whole-rock Nd model ages of 0.9-3.2 Ga for Meso-Cenozoic siliciclastic and igneous rocks (Kapp et al., 2005; Chu et al., 2006; Zhang et al., 2007b; Zhu et al., 2009); (2) the zircon Hf crustal model ages of 1.0-2.6 Ga for the Meso-Cenozoic igneous rocks (Zhu et al., 2009; Zhu et al., 2011b); (3) the inherited zircon U-Pb ages of 1032-2877 Ma from the Permian-Jurassic granites (Chu et al., 2006; Zhu et al., 2011b); and (4) the detrital zircon ages of 980-3323 Ma from the Paleozoic metasedimentary rocks (Leier et al., 2007; Zhu et al., 2011a) that could be soured from denudation of the Lhasa basement exposed previously. Although with Archean material information, the central Lhasa subterrane is characterized by an important Late Paleoproterozoic-Mesoproterozoic period of crustal growth, consistent with the evolution of the Bomi Complex. Thus the Bomi Complex and its equivalent beneath the central Lhasa subterrane constitute the basement of Lhasa that extend in an east-west direction for >1000 km.

5.2. Petrogenesis

The origin of A-type granites is still a subject of active discussion, mainly because so many compositional variants have been found (Bonin, 2007). Although several processes may be involved in their generation, the major debate concerns their source regions and the role of the mantle during their formation (Wu et al., 2002). A number of petrogenetic schemes have been proposed for the magma sources of A-type granites, which fall into two categories, involving crust and mantle sources, while a few advocate mixing between crust and mantle sources (Schmitt et al., 2000; Kemp and Hawkesworth, 2003; Bonin, 2007; Zhang et al., 2007a). According to the above discussion, the protoliths of the granite gneisses in the Bomi Complex are aluminous A-type granites. Based on the mineralogical and geochemical similarities between the aluminous A-type granites and the felsic I-type granites in the Lachlan Fold Belt, King et al. (1997) point to that aluminous A-type granites
are generally produced by partial melting of felsic intercrustal sources as the I-type granites. The major difference between petrogenetic schemes for the aluminous A-type magmas and the I-type magmas is that different physical conditions prevailed (King et al., 1997). The higher temperature is required to produce aluminous A-type granites relative to the I-type granites (King et al., 1997). Zr saturation temperatures were calculated after Watson & Harrison (1983) for these granite gneiss samples in the Bomi Complex. The resulted temperatures are between 815 and 867. Because these gneisses are poor in inherited zircons, the calculated zircon saturation temperatures are underestimations of their initial temperature. The magma temperatures therefore are higher than the general I-type granite magmas. We therefore favor that the magmas of the gneiss protoliths had derived by direct partial melting of middle to lower crustal felsic igneous rocks. Because the Hf model ages record crustal residence time since its extraction from the depleted mantle, the T_{DM2} can be used as proxies for the minimum source ages of host magma from which the zircon crystallized (Zheng et al., 2006). Although the two granitic magmas show different emplace times, they have identical T_{DM2} ages of ~2.0 Ga (Fig. 10a, b), indicating both the two magmas derived from a common source. The T_{DM2} age of ~2.0 Ga suggests that the Lhasa terrane may be underlain by Lower Proterozoic basement. In binary Nb versus Y diagram (Fig. 11), the gneiss samples plot dominantly in the field of ‘Within-Plate’ granitoids and straddle into the arc granitoids (Pearce et al., 1984). Moreover, A-type granitic magma is generally accepted to reflected lithospheric extension (Whalen et al., 1987). Thus the high temperatures required to produce the protracted magmatism in the Lhasa terrane may have been initiated by mantle upwelling or mafic magma influx into a localized area in a continuous extensional setting.

The analyzed samples for the biotite gneisses fall in the field of the sub-alkaline series. In Ab-An-Or ternary diagram (Fig.6), these biotite gneisses straddle the tonalite and the trondhjemite
fields. Together the petrologic features, we consider that the biotite gneiss protoliths were probably
tonalites. These biotite gneiss samples have variable REE contents but similar chondrite-normalized
REE patterns with moderately enriched light REE, relatively unfractionated heavy REE. They have
weak negative Eu anomalies (Fig. 8a). Such REE characteristics are similar to arc-related magmas
of intermediate compositions. The primitive mantle normalized trace element patterns show
generally similar shapes for all samples (Fig. 8b). They are characterized by a relative enrichment
in LILEs (Rb, Th and U) and LREEs (La, Ce, and Pr), but a depletion in Nb, Ta, Sr, and Ti, which
are similar to those of arc granitoids (Zhou et al., 2002). The biotite gneiss samples plot into the
‘Volcanic Arc’ granitoid field in the Y versus Nb tectonic discriminant diagram (Fig. 11), compared
to the granite gneisses in the Bomi Complex that plots within the ‘Within Plate’ field. Calculated
zircon saturation temperatures ($741-777^\circ$) for the biotite gneiss samples are lower than those of
the granite gneisses, consistent with those of the ‘wet’ granitoids formed in a subduction setting.
The two dated biotite gneiss samples have zircon $\varepsilon_{Hf}(t)$ values of +8.1 to +3.6 and +10.5 to +5.7,
respectively, indicating magmatism with a dominantly juvenile mantle contribution. The Hf isotope
features are similar to those of the Late Cretaceous granitoids in the Lhasa terrane that formed in
continental arc setting (Ji et al., 2009). Our evidence suggests that the protoliths of the biotite
gneisses are typical calc-alkaline granitoids, and their formation would be related to a subduction
process.

5.3. Geodynamic processes

In the Lhasa terrane, the magma crystallization ages (~1340-1280 Ma) of the aluminous A-type
granites are older than those (~1250 Ma) of the tonalites. There are two possible interpretations for
the obtained data. Firstly, although the former had formed in a ‘Within Plate’ setting while the latter
in an arc setting, both of them could be formed in an active continental margin. Considering the petrological, geochemical and geochronological studies presented above, we invoke a model of a continuous arc through this period to explain the magma evolution of the Lhasa terrane during the Mesoproterozoic. When earlier extension developing in a back-arc setting, direct mantle-derived heat or basaltic magmas produced from decompressed asthenosphere advect into the extending region, causing partial melting of preexisting arc crust and forming the aluminous A-type granites. The earlier development of crustal extension (thinning) was replaced by convergence and subduction as the regional stress field evolved into compression. The fluids from the dehydrating slab had infiltrated into the overlying mantle wedge and juvenile lower crust (the underplating mafic rocks), causing initiation of arc magmatism. The resulted magmas had intruded into the previous aluminous A-type granites.

The second interpretation is that the aluminous A-type granites mark an earlier Mesoproterozoic rift. The rift can be correlated to the final breakup of the supercontinent Columbia and have opened an ocean. The subsequent subduction of ocean slab had led to initiation of arc magmatism at ~1250 Ma. The Grenvillian (1.3-1.0 Ga) orogenic and subduction related events have been regarded as a critical linkage in Rodinia reconstruction (Dalziel, 1991; Hoffman, 1991; Moores, 1991). The newly recognized Mesoproterozoic arc-related magmatism in the Lhasa could represent the accretion at convergent margin before the continental collision. Both of the accretion and collision constitute the Grenvillian orogeny, causing the assembly of the Rodina supercontinent.

We prefer the latter interpretation given that the Lhasa terrane have originated the northern margin of India (Yin and Harrison, 2000). The geological record in the Lhasa terrane during the Mesoproterozoic is comparable with the southeastern India, although more geological constraints are needed. In southeastern Peninsular India, there are several deformed alkaline complexes outcrop
near the contact zone between the Eastern Ghats Belt and the Archaen cratons. U-Th-Pb zircon
dating constrains the intrusion of the alkaline magmas to a narrow period between ~1262 and ~1480
Ma (Upadhyay, 2008; and references therein). Upadhyay (2008) interpreted the alkaline complexes
to record a Mesoproterozoic rift correlated to the breakup of the supercontinent Columbia. The
rifting along the eastern proto-Indian margin and the opening of an ocean may be related to the
separation of India from east Antarctica. Finally, the rift basin or ocean basin had closed at the late
Mesoproterozoic during Rodinia assembly (Upadhyay, 2008).

6. Conclusions

The protoliths of the granite gneisses and biotite gneisses from the Bomi Complex in the Lhasa
terrane were possibly granites and tonalites, respectively. The protoliths of the granite gneisses were
emplaced at ~1343 Ma and ~1276 Ma, while the protoliths of the biotite gneisses at ~1250 Ma.
Thus the basement of the Lhasa terrane is Mesoproterozoic, which could provide source materials
for the Paleozoic metasedimentary rocks in the Lhasa terrane. Geochemical characteristics show
that the granite gneisses have an aluminous A-type granite affinity. These granite gneiss protoliths
were produced by protracted high temperature partial melting of a common felsic intercrustal
source in a possible rift setting related to the breakup of supercontinent Columbia. In contrast, the
biotite gneiss protoliths have similar geochemical characteristics to those of arc granitoids that
formed in a subduction-related process during Rodinia assembly. The Bomi Complex thus may be
related to the contact zone between the Eastern Ghats Belt and the Archaean cratons in southeastern
India during Mesoproterozoic.
Acknowledgments

This research is supported by the Natural Science Foundation of China (grants: 41103019 and 41073046), the National Key Project for Basic Research (No.2011CB403102), China Geological Survey (No.12120111121261), and the Fundamental Research Funds for the Central Universities. We thank two anonymous reviewers for the constructive comments that greatly improved this manuscript.

References

during crustal folding in the Namche-Barwa syntaxis. Terra Nova 9, 53-56.

Dong, X., Zhang, Z.M., Santosh, M., 2010. Zircon U-Pb chronology of the Nyingtri Group,
southern Lhasa terrane, Tibetean Plateau: implications for Grenvillian and Pan-African

events in the northern Lhasa terrrane, south Tibet: Zircon chronology and tectonic

Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin,
A., McQuarrie, N., 2011. Detrital zircon geochronology of pre-Tertiary strata in the
Tibetan-Himalayan orogen. Tectonics 30, TC5016.

domains, ophiolitic mélanges and geologic evolution. Journal of Asian Earth Sciences 27,
265-285.

characteristics and original settings of the Yarlung Tsangpo ophiolitic mélange, Namche

chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan
igneous complexes. Lithos 61, 237-269.

felsic melts in eastern Gangdese belt: Constraints from U-Pb zircon dating and Hf isotopic

Guo, L., Zhang, H.F., Xu, W.C., 2008. U-Pb zircon ages of migmatite and granitic gneiss from
Duoaxionglia in eastern Himalayan syntaxis and their geological implications. Acta

Guynn, J., Kapp, P., Gehrels, G.E., Ding, L., 2011. U-Pb geochronology of basement rocks in

Guynn, J., Kapp, P., Pullen, A., Heizler, M., Gehrels, G, Ding, L., 2006. Tibetan basement rocks
near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet.

Hoffman, P., 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252,
1409-1412.

Liu, Y., Yan, Z.Q., Wang, M., 2007. History of zircon growth in a high-pressure granulite within...
the eastern Himalayan syntaxis, and tectonic implications. International Geology Review 49, 861-872.

Xu, W.C., Zhang, H.F., Harris, N., Guo, L., Pan, F.B., 2013. Rapid Eocene erosion, sedimentation

Figure Captions

Fig.1. Sketch map of the eastern Himalayan syntaxis, showing sample location (modified after Zheng et al. (2003)). Inset shows the study area. Abbreviations: A=lower Bomi Complex; B=middle Bomi Complex; C=upper Bomi Complex.

Fig.2. Photographs showing the contact relationship between the granite gneiss (T1062) and the biotite gneiss (T1063).

Fig.3. Microstructures of (a) the granite gneiss T844, (b) the granite gneiss T1063, (c) the biotite gneiss T843 and (d) the biotite gneiss T1062. Bi=biotite, Kfs=K-feldspar, Ms=muscovite, Pl=plagioclase, Qz=quartz.

Fig.4. Representative cathodoluminescence images of zircons from (a) the granite gneiss T844, (b) the granite gneiss T1063, (c) the biotite gneiss T843, and (d) the biotite gneiss T1062. The smaller circles show LA-ICP-MS dating spots and corresponding apparent ages, and the larger circles show the locations of Lu-Hf isotope analysis and corresponding epsilon Hf values.

Fig.5. Concordia diagrams of LA-ICP-MS U-Pb dating for zircons from (a) the granite gneiss T844, (b) the granite gneiss T1063, (c) the biotite gneiss T843 and (d) the biotite gneiss T1062.

Fig.6. Normative albite (Ab)-anorthite (An)-orthoclase (Or) contents of both the granite gneisses (diamond) and the biotite gneisses (circle) from the Bomi Complex in the eastern Himalayan
syntaxis. The Ab-An-Or classification for silicic rocks is after Barker (1979).

Fig.7. A-type granite discrimination diagram (after Whalen et al., 1987). Diamonds are the granite gneisses; circles represent the biotite gneisses.

Fig.8. (a) Chondrite-normalized REE patterns; (b) primitive mantle-normalized element spider diagram. Normalizing values are from Sun and McDonough (1989).

Fig.9. Plots of $\epsilon_{Hf}(t)$ versus U-Pb age for studied samples from the Bomi Complex in the eastern Himalayan syntaxis.

Fig.10. Histogram of two-stage Hf modal ages for (a) the granite gneiss T844, (b) the granite gneiss T1063, (c) the biotite gneiss T843 and (d) the biotite gneiss T1062.

Fig.11. Nb versus Y tectonic discrimination diagram for the granite gneiss (diamond) and the biotite gneiss (circle) samples. Discriminations boundaries follow Pearce et al. (1984). ORG=oceanic ridge granite; Syn-COLG=syn-collision granite; VAG=volcanic-arc granite; WPG=within-plate granite.

Fig.12. Sketch tectonic map of the south Tibet (modified after Pan et al., 2011 and Zhu et al., 2011a), showing the tectonic subdivision of Lhasa terrane. Abbreviation: BNS=Bangong-Nujiang suture zone; IYS=Indus-Yarlung suture zone; SNMZ=Shiquan River-Nam Tso Mélange Zone; LMF=Luobadui-Milashan Fault.
Research Highlights

- Zircon U-Pb dating, geochemistry and Hf isotope composition for the Bomi Complex.
- The basement of the Lhasa terrane is Mesoproterozoic.
- The protoliths of the granite gneisses are aluminous A-type granites
- The protoliths of the biotite gneisses were related to a subduction process.
- The Lhasa terrane may be related to the southeastern India during Mesoproterozoic.
Figure 5

(a) T844
Upper intercept: 1347 ± 27 Ma
MSWD = 0.6
Weighted Mean: 1343 ± 27 Ma
MSWD = 0.3

(b) T1063
Upper intercept: 1281 ± 20 Ma
MSWD = 0.5
Weighted Mean: 1276 ± 22 Ma
MSWD = 0.4

(c) T843
Upper intercept: 1268 ± 18 Ma
MSWD = 0.4
Weighted Mean: 1251 ± 16 Ma
MSWD = 0.3

(d) T1062
Upper intercept: 1275 ± 25 Ma
MSWD = 1.1
Weighted Mean: 1250 ± 18 Ma
MSWD = 1.0
Figure 7

(a) Plot of $K_2O + Na_2O$ vs. $10000Ga/Al$.
(b) Plot of FeO^*/MgO vs. $10000Ga/Al$.
(c) Plot of Nb (ppm) vs. $10000Ga/Al$.
(d) Plot of Zr (ppm) vs. $10000Ga/Al$.

A and I, S & M indicate different data points and regions in the graphs.
Figure 9

A plot showing the distribution of U-Pb ages and ε_{Hf(t)} values. The graph compares depleted mantle and CHUR (Chondritic Uniform Reservoir) compositions. The timeline includes ages of 1.4 Ga, 1.7 Ga, and 2.0 Ga, with corresponding ε_{Hf(t)} values. The diagram also indicates the isotopic ratios of 176Lu/177Hf = 0.015. Different symbols represent samples T844, T843, T1063, and T1062.
Figure 10

(a) T844
Mean = 1960 ± 24 Ma
MSWD = 0.8

(b) T1063
Mean = 1985 ± 26 Ma
MSWD = 1.1

(c) T843
Mean = 1675 ± 37 Ma
MSWD = 3.3

(d) T1062
Mean = 1621 ± 25 Ma
MSWD = 1.7