Copy the page URI to the clipboard
McDonald, I.; Sloan, G. C.; Zijlstra, A. A.; Matsunaga, N.; Matsuura, M.; Kraemer, K. E.; Bernard-Salas, J. and Markwick, A. J.
(2010).
DOI: https://doi.org/10.1088/2041-8205/717/2/L92
Abstract
Iron, the universe’s most abundant refractory element, is highly depleted in both circumstellar and interstellar environments, meaning it exists in solid form. The nature of this solid is unknown. In this Letter, we provide evidence that metallic iron grains are present around oxygen-rich asymptotic giant branch stars, where it is observationally manifest as a featureless mid-infrared excess. This identification is made using Spitzer Space Telescope observations of evolved globular cluster stars, where iron dust production appears ubiquitous and in some cases can be modeled as the only observed dust product. In this context, FeO is examined as the likely carrier for the 20 μm feature observed in some of these stars.Metallic iron appears to be an important part of the dust condensation sequence at low metallicity, and subsequently plays an influential role in the interstellar medium. We explore the stellar metallicities and luminosities at which iron formation is observed, and how the presence of iron affects the outflow and its chemistry. The conditions under which iron can provide sufficient opacity to drive a wind remain unclear.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 38327
- Item Type
- Journal Item
- ISSN
- 2041-8213
- Keywords
- circumstellar matter; globular clusters; NGC 362; NGC 5139; NGC 5927; infrared stars; AGB stars; post-AGB stars; mass-loss stars; stellar winds; stellar outflows
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2010 The American Astronomical Society.
- Depositing User
- Miranda Callaway