
Journal Article

1 Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa 277-8583, Japan
2 Instituto de Astrofísica de Canarias, E38205 La Laguna, Tenerife, Spain
3 Department of Science Education, Ewha Womans University, Seoul 120-750, Republic of Korea
4 Department of Astronomy, University of Washington, Seattle, WA 98195, USA
5 Laboratoire Interinstitutionnel de e-Astronomie (Linae), Rio de Janeiro, RJ 20921-400, Brazil
6 Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
7 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
8 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
9 Laboratoire de Physique et Cristallographie, University Bordeaux I, 33405 Talence, France
10 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
11 Department of Astrophysics, University of Wisconsin-Madison, Madison, WI 53703, USA
12 Department of Physics, University of Utah, Salt Lake City, UT 84112, USA
13 Department of Astronomy, and JINA: Joint Institute for Nuclear Astrophysics, Michigan State University, E. Lansing, MI 48824, USA
14 Astroparticule et Cosmologie (APC), Université Paris-Diderot, 75205 Paris Cedex 13, France
15 Center for Cosmology and Particle Physics, New York University, New York, NY 10003, USA
16 Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
17 Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
18 Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA
19 Institute of Cosmology and Gravitation (ICG), Dennis Sciama Building, University of Portsmouth, PO1 3FX, UK
20 Astrophysical Institute Potsdam, 14482 Potsdam, Germany
21 Laboratoire d’Astrophysique de Marseille, CNRS-Université de Provence, 13288 Marseille Cedex 13, France
22 Department of Physics, Hamilton College, Clinton, NY 13323, USA
23 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
24 Department of Science Education, Ewha Womans University, Seoul 120-750, Republic of Korea
25 Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
Section 3.5 of Aihara et al. (2011) described various sources of systematic error in the astrometry of the imaging data of the Sloan Digital Sky Survey (SDSS). In addition to these sources of error, there is an additional and more serious error, which introduces a large systematic shift in the astrometry over a large area around the north celestial pole. The region has irregular boundaries but in places extends as far south as declination $\delta \approx 41^\circ$. The sense of the shift is that the positions of all sources in the affected area are offset by roughly 250 mas in a northwest direction. We have updated the SDSS online documentation\footnote{http://www.sdss3.org} to reflect these errors, and to provide detailed quality information for each SDSS field.

In the Seventh Data Release of the SDSS (Abazajian et al. 2009), the astrometric calibration was performed with respect to the Hipparcos astrometric satellite.

In the Seventh Data Release of the SDSS (Abazajian et al. 2009), the astrometric calibration was performed with respect to the Hipparcos astrometric satellite. In the SDSS Eighth Data Release (DR8), we did not use the UCAC r14 catalog at high declination, but instead used the USNO-B catalog (Monet et al. 2003). The UCAC and USNO-B systems have a relative systematic offset of about 250 mas. The UCAC system is in much better agreement with the Tycho-2 system depending on right ascension. However, in the SDSS Eighth Data Release (DR8), we did not use the UCAC r14 catalog at high declination, but instead used the USNO-B catalog (Monet et al. 2003). The UCAC and USNO-B systems have a relative systematic offset of about 250 mas. The UCAC system is in much better agreement with the Tycho-2 system.

\footnote{http://www.sdss3.org}
Figure 1. Difference between the coordinates of stars in the SDSS DR8 and those in UCAC2 (mostly south of $\delta = 41^\circ$) and r14 (mostly north of $\delta = 41^\circ$), represented in gray scale as a function of right ascension and declination. The top panel shows differences in right ascension and the bottom panel shows differences in declination. The differences have been smoothed on scales of about 0.25. The right ascension residuals are multiplied by $\cos\delta$ so that they are in units of proper angular distance. The residuals are shown in an Aitoff projection in equatorial coordinates. The gray line shows $\delta = 41^\circ$. Black areas are outside the DR8 coverage.

Figure 1 shows the nature and pattern of the DR8 offsets relative to the UCAC and r14 catalogs as a function of position on the sky. The effect on the proper motions published in DR8 of the new errors described here is relatively small, because the proper motions in both DR7 and DR8 are calculated relative to USNO-B anyway (using local recalibrations). However, as noted in Section 3.5, the other errors in astrometry do have an effect on the proper motions. In the region with large astrometric errors in DR8, there is no overall shift in proper motions relative to DR7 (< 0.1 mas yr$^{-1}$), and on 0:25 scales the rms scatter is \sim1 mas yr$^{-1}$. In the unaffected regions, there is also no overall shift in proper motions, and the rms scatter is smaller, \sim0.4 mas yr$^{-1}$.
We recommend users requiring correct global astrometry in the affected areas to use DR7 astrometry where available; we provide matches to DR7 in the DR8 Catalog Archive Server (in the photoPrimaryDR7 and photoObjDR7 tables). We are repairing the errors in the DR8 astrometry and will publish improved astrometric quantities and proper motions.

REFERENCES