Traffic-and-interference aware base station switching for green cellular networks

How to cite:

© 2013 IEEE
Version: Accepted Manuscript
Link(s) to article on publisher’s website:
http://www.ieee-camad-2013.org/

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Traffic-and-Interference Aware Base Station Switching for Green Cellular Networks

Atm Shafiu1 Alam, Laurence S. Dooley and Adrian S. Poulton
Department of Computing and Communications
The Open University, Milton Keynes, United Kingdom
{atm.alam, laurence.dooley and adrian.poulton}@open.ac.uk

Abstract—Base station (BS) sleeping in cellular networks has emerged as a promising solution for more energy efficient communications, concomitant with lowering the network carbon footprint. Switching off specific BS entirely however, can lead to coverage holes and severe performance degradation. To avoid coverage holes, the transmit power of neighbouring BS must be commensurately increased, which can cause higher interference to other cell users. Recently a BS-RS (relay station) switching model has been proposed where the BS changes operating mode to a RS during off-peak periods rather than being completely turned off. This paper presents a traffic-aware and traffic-and-interference aware switching strategy for both the BS sleeping and BS-RS switching paradigms, which dynamically establishes the conditions for a BS to alter its working mode. The switching is based upon a dynamic traffic threshold allied with the received BS interference level. Analysis corroborates both new algorithms significantly improve network energy efficiency, while upholding the requisite quality of service provision.

Keywords—green cellular networks; base stations; relay station; interference-aware; traffic-aware; base station switching.

I. INTRODUCTION

The last decade has witnessed extraordinary growth in cellular networks, with the introduction of smart phones and other high-end devices like the Android, iPad, Kindle and gaming consoles spawning a raft of data intensive applications. The corresponding explosion in data demand has forced operators to increase the deployment density of base stations (BSs), though this rapid data growth has commensurately contributed to higher energy consumption and larger carbon footprints. In 2008 for instance, server farms and core telecommunications infrastructure were responsible for around 3% of the total worldwide electricity consumption with BS and backhaul networks consuming just 0.33% [1], which have inexorably increased over the last five years. The corollary is that both energy consumption and related greenhouse gas emission levels have become major political, economic, environmental and social issues for vendors and regulators alike, with innovative energy efficiency network design strategies and solutions being mandated. In existing cellular networks, it is customary for the BS to be always-on, with their design being predicated on peak cell traffic loads, irrespective of either the load profile or time of day. Despite significant latent spatial and temporal traffic fluctuations, the continual operating mode of BS means they are generally responsible for 60-80% of the total network energy consumption [2].

Various BS sleeping schemes [2–6] have been proposed with the aim of reducing this high energy consumption by turning off certain BSs during periods of low traffic. These are only feasible however, if neighbouring BSs can guarantee the coverage of the cell put to sleep without compromising the quality-of-service (QoS). Cell zooming [3] for instance, where neighbouring cells either expand or shrink their coverage enable other cells to be put to sleep during low traffic periods, though successfully managing inter-cell interference (ICI) is paramount for this solution to be viable. In [2], static BS sleep patterns based upon a deterministic traffic profile are applied over a 24-hour time window, while [4] initiates BS switching based on traffic variations and the distance between the BS and mobile stations (MSSs). In [5], BS are dynamically turned off one-by-one by considering the network impact of the extra load incurred by neighbouring BSs. Interestingly the opposing view is expressed in [7] that BS sleeping may neither be viable or energy efficient due to the higher transmission power other BS must employ and the inevitable capacity/coverage degradation. Extending coverage by increasing the transmit power of neighbouring cells can significantly impact the ICI in certain areas of the network. By taking cognisance of the coverage in BS sleeping approaches and ensuring analogous QoS to normal BS mode, the authors recently proposed [6] an energy efficient BS-RS (relay station) switching model where certain BS instead of being turned off, are switched to a lower-power RS mode during low-traffic intervals.

A recurrent feature in these energy saving strategies is they do not consider the influence of interference in choosing which BS to turn off. This provided the motivation to investigate the nexus between the best BS selection to be switched off and interference. This paper presents a new dynamic traffic-aware (DTA) and a dynamic traffic-and-interference-aware (DTIA) BS switching algorithm which can be seamlessly incorporated in both BS sleeping and BS-RS switching models to determine the best BS set to be kept active at any instant. Using either traffic information (DTA) or a combination of traffic load and received BS interference (DTIA), the switching mechanisms not only turn off particular BS to conserve energy, but choose the best BS set which decreases off-cell MS energy consumption, while critically upholding the requisite QoS.

The rest of the paper is organized as follows. In Section II, the system model is described along with the channel, traffic and power models, while Section III introduces the DTA and DTIA algorithms for minimizing the number of active BS. Section IV presents a rigorous performance analysis of DTA.
and DTIA, with Section V making some concluding comments.

II. SYSTEM MODEL

A. Network and Channel Models

A cellular network comprising a regular hexagonal grid arrangement of \(N\) cells (BSs) is considered. The set of BSs, \(\mathcal{B} = \{B_1, \cdots, B_N\}\), lie within a two-dimensional area \(\mathcal{A}\), with \(M\) MSSs, denoted by \(\mathcal{M} = \{1, \cdots, M\}\) located in \(\mathcal{A}\). \(\mathcal{M}_b\) is the set of MSSs associated with \(B_b\) i.e. \(\mathcal{M}_b = \mathcal{M} \cup \cdots \cup \mathcal{M}_M\) and \(\mathcal{M}\) \(\cap \mathcal{M}_i = \emptyset\) for \(i \neq j\). Each BS has an omni-directional antenna and is situated in the cell centre. It is assumed each \(B_b\) is connected to its neighbour BS set, \(\mathcal{N}_b\) via a dedicated backhaul connection so it can cooperatively share information. For BS-RS switching, each cell has a low-powered RS, \(B_s \in \mathcal{B}\) = \{\(R_1, \cdots, R_m\}\}, co-located with the BS, which is named as the switched-RS [6].

Each \(B_b \in \mathcal{B}\) is characterized by a mode activity factor, \(A_d(t)\) at time \(t\), with \(B_b\) being in either active \(A_d(t)=1\) or dormant mode\(^1\) \(A_d(t)=0\), and with a BS and the switched-RS operating in reverse modes (active/dormant). When \(A_d(t)=0\) for \(B_b\), the corresponding \(\mathcal{M}_b\), referred to as the off-cell MSSs, are redistributed amongst neighbouring BSs, \(\mathcal{N}_b\). A MS, \(m \in \mathcal{M}\), is associated with and served by the BS \(B_b^*\) which provides the strongest signal strength:

\[
B_b^* = \arg \max_{B_b \in \mathcal{B}} g_{bm} \cdot P_{tm}
\]

where \(\mathcal{B}_m \subseteq \mathcal{B}\) is the set of active BS at any time instant, \(g_{bm}\) is the channel gain between \(B_b\) and MS \(m\) and includes both path-loss and shadow fading, and \(P_{tm}\) is the transmit power of \(B_b\) for \(m\) so that \(\sum_{m=\mathcal{M}} P_{tm} \leq P_{\text{max}}^{B_b}\), where \(P_{\text{max}}^{B_b}\) is the peak BS transmit power. If every active BS has a maximum bandwidth \(W_{\text{max}}\), then each sub-channel will have a bandwidth \(W = W_{\text{max}}/N_{\text{RB}}\), where \(N_{\text{RB}}\) is the total number of primary resource blocks (PRB) in each BS. The achievable throughput of \(B_b\) is then:

\[
R_b = W \cdot \sum_{m=\mathcal{M}_b} \log_2 \left(1 + \frac{g_{bm} \cdot P_{tm}}{\sum_{i=\mathcal{N}_b} g_{im} \cdot P_{tm} + \sigma^2}\right)
\]

where the term \(\sum_{i=\mathcal{N}_b} g_{im} \cdot P_{tm}\) is the interference received at \(m\) from its direct neighbouring cells, and \(\sigma^2\) is the noise power. Using (2) and the total power consumption of \(B_b\), the network energy efficiency (EE) in bits per joule can be derived as [6]:

\[
\eta_{EE} = \sum_{b \in \mathcal{B}} \frac{R_b}{P_{tb}}
\]

\(^1\)When a BS changes from active to either sleep (BS sleeping) or RS mode (BS-RS switching), it switches from active to dormant mode.

B. Traffic Model

Due to the highly dynamic temporal and spatial nature of cellular traffic [2], the call arrival process is modelled as time-inhomogeneous by multiplying a time-homogeneous Poisson process with a traffic intensity parameter \(\lambda\) and the rate function \(0 \leq f(t) \leq 1\) shown in Figure 1, which closely reflects traffic patterns in real cellular networks [5]. If the call arrives in cell \(B_b\) according to a Poisson process with intensity \(\lambda_b\) [calls/sec] and constant service time \(h\) [sec/call], then the normalized traffic load of \(B_b\) at time \(t\) is:

\[
\rho_b(t) = \frac{X_b \cdot h \cdot \delta_b \cdot f_b(t)}{N_{\text{RB}}} \quad \forall b = 1, \cdots, |\mathcal{B}|
\]

where \(X_b \sim \text{Poi}(\lambda_b)\) is a Poisson random variable with parameter \(\lambda_b\), \(\delta_b\) is the required number of channels (PRB) and \(N_{\text{RB}}\) is the total number of PRB in each BS, with \(|\mathcal{B}|\) being the set of traffic loads at time \(t\).

C. Power Consumption Model

The total power consumed by \(B_b\) in the BS-RS switching model can be expressed as a linear relationship [8], where without of generality, the index \(t\) has been omitted:

\[
P_{t} = P_{t,b} + P_{t,rs}
\]

\[
= A_b \cdot (a_{b,} \cdot P_{t,bs} + P_{t,fs}) + (1 - A_b) \cdot (a_{rs} \cdot P_{t,rs} + P_{t,fr})
\]

where \(P_{t,b}\) and \(P_{t,rs} \leq P_{t,fr}\) are respectively the average total consumed and transmission power of \(B_b\), \(a_{b,}\) is a scaling factor that reflects both amplifier and feeder losses and \(P_{t,fr}\) is the fixed power components which are independent of the transmission power. The corresponding parameters for \(B_s\) are signified as \(P_{t,bs}, P_{t,fr} \leq P_{t,fr}\), \(a_{rs}\), and \(P_{t,fr}\) respectively, while \(a_{bs} > a_{rs}\) and \(P_{t,fr} > P_{t,fr}\) [8]. When \(A_d(t) = 1\), \(B_b\) is active so the second term in (5) which accounts for \(R_b\) is zero. Moreover, since there is no switched-RS in the BS sleeping model, the second term, \(P_{t,rs}\) in (5) will not exist.

Figure 1: A rate function for time-inhomogeneous Poisson model.
From the MS power consumption standpoint, the main constituent is transmit power, which increases with distance from the BS due to path-losses and shadowing effects. It is assumed each MS is capable of autonomously adapting its transmit power according to the LTE specification [9]. The total MS power consumption within a cell, B_b, is expressed as:

$$P_{tx,b} = \sum_{n=\mathcal{M}} P_n^{(w)}$$

where $P_n^{(w)} \leq P_{\text{max}}^{\text{MS}}$ is the MS transmit power and $P_{\text{max}}^{\text{MS}}$ the maximum transmit power.

III. BS Switching Strategy

The aim of BS switching is to minimize the number of active BSs during low traffic periods so reducing energy consumption. This section describes the dynamic BS switching strategy used in the new DTA and DTIA algorithms within both the BS sleeping and the BS-RS switching models.

In switching active BS to dormant mode, the key challenge is deciding when the traffic load is sufficiently low that user performance can still be adequately maintained after the mode change. The basis of DTA switching is that when the traffic load of B_b falls below a threshold ρ_{th}, it can switch to dormant mode, provided the active neighbouring BSs \mathcal{N}_b can handle the extra traffic from B_b. The value of ρ_{th} has been empirically shown to be in the range 0.5 to 0.6 [5],[6]. Switching based on traffic load alone, however, may not lead to the best BS set being made dormant because no cognisance is made of MS locations, which can lead to high interference in other cells. The DTIA algorithm assimilates interference into the BS switching, with each B_b comparing both the traffic load and received interference with active neighbours \mathcal{N}_b, with the requisite information being exchanged between neighbouring BSs by means of an X2 interface.

A. DTA and DTIA switching algorithms

Each $B_b \in \mathcal{B}^m$ co-operatively acquires instantaneous traffic load and received interference power information from users in their neighbouring cells. Represented as $\mathbf{w} = \{w_1, \ldots, w_{|\mathcal{B}|}\}$, a weighted vector is formed of all the normalized received interference power at each BS in \mathcal{B}^m. A utility function for each B_b is now defined which encompasses the impact of both traffic and interference:

$$U(B_b) = \begin{cases} \rho_b, & \text{if } \rho_b \leq \rho_{th} \\ w_b, & \text{otherwise} \end{cases}$$

(7)

When $\rho_b > \rho_{th}$, B_b cannot be switched to dormant mode so $U(B_b)$ is set to ∞. Also as $\rho_b \leq \rho_{th}$, a small w_b gives greater emphasis to the received BS interference component in DTIA switching, while conversely when $w_b = 1$, interference is not considered and DTIA reverts to the DTA algorithm. Since each B_b shares their status amongst its neighbours \mathcal{N}_b, the B_b^* with the lowest $U(B_b^*)$ in (7) is switched to dormant mode (Line 5-6) in Algorithm 1, with the corresponding MSs \mathcal{M}_b, associated with B_b^* being redistributed among \mathcal{N}_b (Line 8) in accordance with Algorithm 2. When all \mathcal{M}_b have been successfully reassigned to their neighbours, B_b is switched to dormant mode ($A_b(t)=0$) and its status updated in (Lines 10-12).

Algorithm 1: BS Switching (Active to Dormant Mode)

1. **Inputs:** $\rho_0, \rho_{th}, \mathcal{M}, \mathcal{B}, \mathbf{w}$. **Outputs:** A_b.
2. Initialize $\mathcal{B}^m \in \mathcal{B}, \mathcal{M}_b \in \mathcal{M}, \forall B_b \in \mathcal{B}^m$.
3. Calculate: $U(B_b), \forall B_b \in \mathcal{B}^m$ by eq. (7).
4. for each $B_b \in \mathcal{B}^m$ do
5. Exchange status (ρ_b, A_b, w_b) among \mathcal{N}_b.
6. Find $B_b^* = \arg \min_{B_b \in \mathcal{B}^m} U(B_b^*)$.
7. if $B_b^* = B_b$ then
8. Distribute all \mathcal{M}_b among \mathcal{N}_b by Algorithm 2.
9. end if
10. if $\mathcal{M}_b = \emptyset$ then
11. $A_b \leftarrow 0, \rho_b \leftarrow 0, w \leftarrow \infty, \mathcal{B}^m \leftarrow \mathcal{B}^m - \{B_b \}$
12. Update status (ρ_b, A_b, w_b).
13. end if
14. end for

The distribution of users from B_b^* to \mathcal{N}_b is described in Algorithm 2, where every $m \in \mathcal{M}_b$ is assigned to the $B_b^* \in \mathcal{N}_b$ with the maximum signal strength as long as the traffic load ρ_b of B_b^* is less than the maximum ρ_{max} permitted without compromising the QoS (Lines 3-9). Any MS in \mathcal{M}_b unable to hand over to an active neighbouring BS is blocked (Line 11).

Algorithm 2: User Distribution of a BS among Neighbours

1. **while** $\mathcal{M}_b \neq \emptyset$ **do**
2. Select a MS, $m \in \mathcal{M}_b$.
3. Find $B_b^* = \arg \max_{B_b \in \mathcal{N}_b} \rho_{b,m} \cdot P_{\text{th}}^m$.
4. if $\rho_{b,m} \geq \rho_{\text{max}}$ then // ρ_{max} is max. load served by each BS
5. $\mathcal{N}_b = \mathcal{N}_b - \{B_b \}$ \// B_b has no capacity to serve m.
6. else
7. Associate m to B_b. // m is now handed over to B_b.
8. $\mathcal{M}_b = \mathcal{M}_b - \{m \}$.
9. **end if**
10. if $\mathcal{N}_b = \emptyset$ then
11. MS in \mathcal{M}_b are blocked and $\mathcal{M}_b \leftarrow \emptyset$
12. **end if**
13. **end while**
To return \(B_h \) back to active mode, all neighbouring BSs must monitor their traffic loads and cooperate with each other to make the decision for the off-cell BS, \(B_h \), and request it be made active again when the following condition is upheld:

\[\rho_h > \rho_{th} \]

Once \(B_h \) is active (\(A_{th}(t)=1 \)), the corresponding traffic load reverts to the original BS \(B_h \).

IV. SIMULATION RESULTS

To analyse the performance of the DTA and DTIA energy-efficient algorithms in both BS sleeping and BS-RS switching models, a simulation layout of 5 by 5 hexagon cells was used with an inter-site distance of 1.732 km and switching threshold \(\rho_{th}=0.6 \) [5]. \(\lambda_b \) was assumed to be \(138.9 \times 10^3 \) calls/sec, the service time was set at 180 sec with \(\delta_{in} = 1 \) PRB, which corresponds to a peak-time load of 25 PRBs, while the time-inhomogeneous traffic used the rate function displayed in Figure 1. All other simulation environment parameter settings are summarised in Table 1 and are fully congruent with the 3GPP/LTE standard [9].

Figure 3(a) compares the performance of DTA and DTIA in terms of the average number of active BSs over a 24-hour period, with the normalized traffic load being averaged in 15-minute slots. The plots confirm that DTIA is able to maintain more BSs in dormant mode in the early morning while conversely more BSs are active in the evening compared to DTA, though the average number of active BS across the day is the same for both algorithms, so they consume the same \(P_f \) in (5). Figure 3(b) contrasts the selected BS sets chosen to be dormant at a specific time instant (11:00am) for DTA and DTIA respectively. While both have 12 active BSs, the chosen BS sets are very different. The important point to stress is that the DTIA BS set selection which remains active is better than for DTA because those BSs which incur the highest interference are given priority to switch to dormant mode hence leveraging better off-cell users’ link quality. This is apparent in the higher throughput of off-cell users and the lower transmission energy consumption.

TABLE I: SIMULATION ENVIRONMENT PARAMETERS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier frequency</td>
<td>2 GHz</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>5 MHz</td>
</tr>
<tr>
<td>Max. transmit power (BS/RS/MS)</td>
<td>43/24 (or 30)/23 dBm</td>
</tr>
<tr>
<td>Antenna gain (BS/RS/MS)</td>
<td>16/10/0 dBi</td>
</tr>
<tr>
<td>BS/RS antenna height</td>
<td>32 m</td>
</tr>
<tr>
<td>Noise power</td>
<td>-141 dBm/Hz</td>
</tr>
<tr>
<td>BS-MS/RS-MS & BS-RS links</td>
<td>Type B (NLOS) & D (LOS)</td>
</tr>
<tr>
<td>(suburban, terrain Type B) [10]</td>
<td></td>
</tr>
<tr>
<td>Shadow standard deviation</td>
<td>8 dBm</td>
</tr>
<tr>
<td>Receiver sensitivity</td>
<td>-99 dBm (MS)-103 dBm (BS)</td>
</tr>
<tr>
<td>Power model parameters in (5)</td>
<td>(a), (f)</td>
</tr>
<tr>
<td></td>
<td>BS: 21.45, 354.44</td>
</tr>
<tr>
<td></td>
<td>RS: 7.84, 71.50</td>
</tr>
</tbody>
</table>

To return \(B_h \) back to active mode, all neighbouring BSs must monitor their traffic loads and cooperative with each other to make the decision for the off-cell BS, \(B_h \), and request it be made active again when the following condition is upheld:

\[\rho_h > \rho_{th} \]

Once \(B_h \) is active (\(A_{th}(t)=1 \)), the corresponding traffic load reverts to the original BS \(B_h \).

Figure 4 compares the corresponding EE (3) performance for DTA and DTIA over an entire day. While the former considers only traffic load using \(\rho_{th} \) for switching, DTIA turns dormant those BSs suffering the highest interference first, so overall network interference is attenuated and EE improved during low traffic load periods. For example, the EE for DTIA in the morning period (1:00am to 11:00am) is nearly 22% higher than for DTA. Furthermore, by predetermining the selection of the best active BS set upon the received interference of each BS, overall network throughput is enhanced. Figure 4 also confirms BS-RS switching consistently performs better than the BS sleeping model using both the DTA and DTIA algorithms. This is because by switching to RS mode, the distance between the neighbouring BSs which are serving the off-cell MSs is reduced, so lowering the transmission power consumption. Similarly as Figure 5 corroborates, the off-cell user throughput for off-cell MSs is improved by the BS-RS switching model.
lower blocking probability than DTA, due to the better choice of BS to remain active during the low-peak traffic periods. Finally, Figure 7 contrasts the energy reduction performance for off-cell MSs achieved by DTIA and DTA, with the former providing a more than 5% improvement. The graphs also inculcate that better energy savings (≈30%) are achieved using the BS-RS switching model, which is ultimately manifest in an enhanced quality uplink between the BS and MS.

V. CONCLUSION

This paper has presented a dynamic traffic-aware (DTA) and dynamic traffic-and-interference aware (DTIA) switching strategy to change the operating mode of certain base stations (BSs) to dormant to conserve energy, while retaining the best selection of active BS which uphold the desired quality-of-service. For DTIA, BS switching is founded on the traffic load profile of each BS and uses a preset threshold, while DTIA in contrast, incorporates received BS interference power along with traffic load to manage the switching decision. DTIA by virtue of choosing the better BS set to remain active affords improved network energy efficiency, and while DTA and DTIA use the same number of active BS on average, they are dissimilar sets. Both new switching algorithms have been seamlessly integrated into the BS sleeping and BS-RS (relay station) switching models, with the latter consistently providing superior performance for off-cell mobile station throughput and energy efficiency.

REFERENCES