Improving online deliberation with argument network visualization

Conference Item

How to cite:
De Liddo, Anna and Buckingham Shum, Simon (2013). Improving online deliberation with argument network visualization. In: Digital Cities 8, 29 June - 02 July 2013, Munich, Germany.

For guidance on citations see FAQs.

© 2013 The Authors
Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Improving Online Deliberation with Argument Network Visualization

Anna De Liddo
KMi, Open University
Milton Keynes, UK
anna.deliddo@open.ac.uk

Simon Buckingham Shum
KMi, Open University
Milton Keynes, UK
simon.buckingham.shum@open.ac.uk

ABSTRACT

Social media are increasingly used to support online debate and facilitate citizens’ engagement in policy and decision-making. Nevertheless the online dialogue spaces we see on the Web today typically provide flat listings of comments, or threads that can be viewed by ‘subject’ line. These are fundamentally chronological views which offer no insight into the logical structure of the ideas, such as the coherence or evidential basis of an argument. At a glance, all one can tell us which threads have most contributions, or have been most active. In essence, because very simple ontologies underpin these platforms, there is no way for a machine or person to assess the state of the debate, other than reading huge numbers of contributions. The challenge of designing usable, enjoyable platforms with richer representational schemes, which add real value to user experience and performance, is at the core of a 25 year research programme dating back to pre-Web hypertext systems [2].

Contested Collective Intelligence

In all but the most trivial dilemmas, rarely does everybody agree, for instance, due to different intellectual traditions, competing organizational objectives, information overload or ambiguity. Building common ground by understanding and overcoming differences is at the core of what it means to transform a set of isolated individuals into an effective collective. Consequently, the concept of Contested Collective Intelligence (CCI) has been recently defined as a distinctive subset of CI [5]. Combined human-machine annotation and analytics are needed for the many societal contexts in which deliberation and debate are the hallmarks.

Computer-Supported Argument Visualization (CSAV)

An established research literature documents the advantages, and challenges, of making the structure and status of a dialogue or debate more visible [2]. Following Concept Mapping [14], CSAV makes visually explicit users’ lines of reasoning and (dis)agreements. Naturally, the use of semantic networks to provide computational intelligence has now converged with Web Science, resulting in Web 2.0 Argumentation [3] and a semantic web standards-based Argument Web [15]. Many CSAV tools are now available, exhibiting a wide mix of network visualizations and more conventional threaded renderings. Deliberatorium [11] uses a linear-threaded visualization, while Cohere [3] supports a graph visualization of the online discourse. Debategraph [6] and CoPe_it [21] enable users to switch between a linear, threaded and graph views. As with most web applications, design decisions appear to have been made more on intuition and craft skill. Experience tells us that as the number of participants and nodes grows, and if more expressive ontologies are used to model the discourse, network
visualizations can become unwieldy. However, to date, we have not yet found a systematic evaluation of the merits or otherwise of CSAV vs. threaded interfaces. The internet usage pattern of “participation inequality” [10] confirms that typically, only a very small percentage of users contributes to a website, compared to vast majority who consume. However, that 1% of users are still critical, and one strand of CSAV research has focused on the learning curve for content creation with such tools, since they require more effort than simply pressing Add Comment or Reply. Our prior studies of graphical argumentation show there is a complex interplay between the expressiveness of the notation, user interface affordances, user expertise, task strategy, and synchronous vs. asynchronous mapping [4, 16, 17]. While browsing, searching, reading and writing clearly cannot be divorced from each other, the focus of the study reported here is not on the authoring process, but on the experience and performance of the majority of users who will be reading and searching the online deliberation platforms.

RESEARCH QUESTION AND METHODOLOGY

Does an interactive, self-organizing network visualization of arguments provide advantages over a more conventional threaded interface for reading and search? The following research questions was formulated:

RQ: What are the affordances of threaded and network visualization of arguments for supporting information seeking tasks?

A grounded theory analysis has been conducted to analyze the effects of using different graphical interfaces for the representation of arguments, and to assess to what extend these affect the way in which users read and understand the online discourse. Grounded Theory is a qualitative research method [8] which has been used to provide insights on people’s views, behaviors, understanding and experience with technology in HCI research and very recently the discussion has been revamped on what are the nuances and innovation to the method that may help to respond to the increasingly request and diffusion of qualitative research studies in HCI [1].

USER STUDY

Goal, Design and Participants

We studied an heterogeneous group of researchers and practitioners in Higher Education engaged in the use of a collective intelligence tool for collaborative argumentative discourse and knowledge construction. An exploratory user study was run to observe users’ performance under three information-seeking tasks, and compare their performances using two different user interfaces for arguments visualization (threaded vs network visualization of arguments). Participants were divided in two groups of 5. The 10 subjects were drawn from the members of different [anonymized] University departments, so with widely mixed IT expertise. They were randomly allocated to the two different groups, but we verified post-hoc that IT expert/non expert ratio in each group was approximately the same. The median age was 40 (with range from 32 to 48) with the majority of users being either native or near-native English speakers. Most subjects were employees at the [anonymized] University, all having university degrees or higher.

Online Environment: The Evidence Hub

The online discussion tool used throughout the study is the Evidence Hub system. The Evidence Hub is a collective intelligence and online deliberation tool to support argumentative knowledge construction by crowdsourcing contributions of issues, potential solutions, research claims and the related evidence in favor or against those. The Evidence Hub is particularly oriented to support community of practitioners to build evidence-based knowledge about specific key challenges that are set up to the community. This key challenges can then be addressed by tackling specific sub issues, that the community contribute to add to the system. Each sub issue can then be tackled by proposing solutions to it, or by sharing specific research claims that can help tackling the issue. Finally potential solutions and research claims can be debated by the community by advancing evidence in favor or against those and by providing relative resources backing them up. By scaffolding users contributions in this way, the Evidence Hub aim to effectively crowdsource and support large-scale deliberation in e-democracy and decision-making processes. To allow comparison between users interaction with two graphical representations of arguments, two different versions of the evidence Hub have been set up which used different user interfaces for arguments visualization. The two versions of the Evidence Hub though pointed at the same database to make sure that participants in the two groups would receive exactly the same quantity and type of information.

The Linear-threaded Interface for Arguments Visualization

The linear-threaded interface was used by Group1(Figure 1). This interface for arguments visualization is similar to the most common threaded online discussion interfaces to support argumentative discourse activities (see in example tools such as MIT Deliberatorium [11]). It consists of a classical threaded discussion visualization in which issues set the focus of discussion (title of the page in Figure 1), and then potential solution are listed below (light bulb icon are placed before each solution). Each solution can then be expanded on demand. Progressive indentation of text shows the supporting and challenging evidence for this solution, and the resources supporting them (see Figure 1).

The Network Interface for Arguments Visualization

The network interface was used by Group 2: This consists of an argument map built by following the modified IBIS,
PHI model of arguments [13]. Each statement added to the discussion is here represented as a node in a semantic graph structure (Figure 2). In this visualization, node icons and colors represent the rhetorical role of the statement in the discussion: issues are characterized by a red question mark icon in a dark turquoise node (yellow in Figure 2 because the node is selected); solutions are distinguished by a light bulb icon (see light green nodes), while pro and con are characterized by purple nodes and are connected with a green link or red link which respectively indicate “supporting” or “challenging” relations.

Figure 1. Screenshot of the linear-threaded Interface for Arguments Visualization

The network visualization of the Evidence Hub is build with a Java Applet, which lays out the nodes dynamically, and following a gravitational algorithm. This adds a specific animation component to most common argument network visualization tools.

Figure 2. Screenshot of the Network Interface for Arguments Visualization

DATA ANALYSIS AND RESULTS

The experimental design aimed to provide an answer to the RQ by focusing on three specific information-seeking tasks (for issues of space we skip detailed description of the tasks):

1. Identifying solutions to an issue (Task 1)
2. Identifying synergies between solutions (Task 2)
3. Identifying contrasts in the wider debate (Task 3)

To compare user’s performance across these three tasks we used three metrics: Task Accomplishment; Data Model Interpretation and Emotional Reactions to the two interfaces. In the following we analyze and compare users’ performance by focusing on each of these metrics.

Task Accomplishment

By filtering clips by “performance” code, we found that there are 4 main sub-categories of performance emerging form the analysis, that are: Accomplished easily, Accomplish but incorrect, Not accomplished, and Give Up the task. From the analysis of the quotations and of the screen capture video of the interaction we found that there are two cases in which participants could not accomplish the task. The reason of task failure is neither to ascribe to the type of interface for graphical representation of arguments or to problems of data model interpretation. Participants did not accomplish the task because they did not understand the question posed by the moderator. See i.e. quotes from P9 and P10: “...sorry I do not understand the question....” “What do you mean? I do not understand...”.

Moreover, two interaction events have been coded as “accomplished but incorrect”. Both events occurred in Group 1 (linear interface). Participants who experienced those events struggled to find the answer because this required them to click and expand two argumentation sequences and then read and compare them. This is not convenient with a linear interface because it requires a lot of clicking, expanding, scrolling up and down the screen, and a lot of reading. In a linear interface the structure does not help to interconnect and compare content and this is a burden to the user. Because of this reason some users focused more on the content rather than on the argumentation process, which lead to digressions and incorrect responses.

On the contrary the interaction events coded as “Accomplished easily” were experienced by 4 participants in Group 2 and 2 participants in Group 1. The reasons why Group 2 could accomplish easily are mainly due to the visual hints provided by the network representation. Specifically, links labels and colors seem particularly predominant in determining success. Users that accomplish the task easily usually relay on links colors and link label paying less attention to the iconography of the nodes. The number of links (that is to say connections density) seems also to be a very effective way to provide answer to the task. Interestingly visual hints were effectively used not only by participants that have self
declared to be very visual thinkers, but also by participants that have confessed they are “not visual and prefer text to graphical representation”. See in Example the case of P8: “...here we are, this one...is that correct?... I was not concentrating on what part of the diagrams are solutions and what constitutes evidence ... I was just looking for intersecting lines and I was thinking that have to be there where there are converging lines...so I thought may be is that one there and I zoomed to check...”

Comparing Data Model Interpretation supported by the two interfaces
In order to compare linear and network visualization of arguments in term of how they supported Data Model Interpretation (DMI) we first identified the emerging codes related to DMI and merged them under the 5 main classes (get the model, get the model after a while, get the categories right, get the model but is unsure, misinterpret categories, does not get the model). We then analyzed the interaction events and quotations for each main class. Results show that DMI was better supported by network visualization of arguments. Category misinterpretation and uncertainty in data model interpretation tend to occur more frequently in Group1 than in Group2, while network visualization of arguments seems to support a complete and correct understanding of both categories and data model. Findings seems to suggest that one possible motivation for this is that argument maps provides examples of how the content of discussion is interpreted in the data model supported by the Evidence hub. In this way users can learn by example (“let’s see what other people have put under this category” - P8) and at each exploration of a new argument map they reinforce their understanding of the data model (“this is my solution and this evidence support the solution, and these two nodes challenges it...and the clue is the red “challenges” link - P7)“.

Comparing Emotional Reactions to the Two Interfaces
Emotional reaction to the graphical representation of arguments is another emerging category that we used to measure users satisfaction and emotional attitude toward the two proposed interfaces. Results show that a general sense of surprice and positivity toward the network visualization is recorded, which easily sparks into linkeness and even exhibitment (“ahhh so fabulous!”-P7; “wow this is amazing!”-P6). This also seems to increase users confidence with the tool (“I feel confident, I’s pretty sure this is the answer”-P7). The main objects of surprise and exhibitment toward the network visualizations are usually due to the self-arranging graph applet which presents the map as floating nodes, slowly arranging on the screen(“it is like a gelly, it is so fantastic!”-P7; “it is all shifting! It is interesting... I quite like that!”-P8). Movements provokes surprice and exhibitment and it is also recognized as a useful hint. By looking at the floating network, users understand that the map is not static and they can move around and play with it, feature that they seem to mostly enjoy. Moving arranging, zooming, pinning etc are the network features which most augment users confidence and satisfaction with the tool.

On the contrary emotional reactions to the linear interface for arguments visualization regards general skepticism and annoyment which can also decay into confusion and feeling lost (“I think I am lost”-P1; I am now buring... because I haven't work out how to do it” “that is the all page I am looking at...ohhh ok I give up!”-P5). The main reasons of users frustration are related to the need of “too many clicks” to seek information and frequent “change of context” which often provokes disorientation.

CONTRIBUTIONS AND FUTURE RESEARCH
The grounded theory analysis of the experimentation’s video and post experimentation interviews transcripts showed that different graphical interfaces for the representation of arguments strongly affect the way in which users read and understand the online discourse. Linear interfaces perform worse especially when when the information is nested into more articulated argumentation chains (Task 2). In such cases the network-like representation and the visual hints such as network structure, iconography and links’ labels and colors seem to facilitate the identification of argumentation chains, thus supporting indirect connection and higher-level inferences of how the content connects. The results show that data model interpretation is also improved by argument visualization. Notably, exposing the data model in form of argument maps appears to enable a learning by example mechanism, whereby users reinforce their understanding of the data as they navigate through the user interface. Moreover the effectiveness of network visualization of arguments and the positive impact it has on arguments reading and comprehension increases as information complexity increases: the bigger the discussion, the better network visualizations performs compared to linear-threaded visualizations. Finally there is an element of fun and excitement associated to dynamic network visualization of arguments. This may suggest that this type or arguments visualization should be favored in fields such as gaming or education in which the element of “play” and positive emotional reaction are key factors to success.

Finally from a theoretical perspective we have presented a literature review of CSAV in the light of the late development of social media and Collective Intelligence research. This paper shows promising results on the capability of network visualization of arguments to support reading and sensemaking of online discourse activity, especially when information quantity and complexity increases, as for instance in the case of complex debates and massive online discussions. Network visualization of arguments also plays an important role in augmenting online discussion by providing a layer of structure that helps to improve human
comprehension of the argumentation structure behind the online discourse (by improving the understanding of the argumentation data model). These findings open new avenues for combining social media discourse with advanced network visualizations of discourse elements (issues, solutions and arguments) to both improve users’ engagement and sensemaking of large-scale online deliberation processes.

REFERENCES