The Open UniversitySkip to content
 

Long-term climate change commitment and reversibility: an EMIC intercomparison

Zickfeld, Kirsten; Eby , Michael; Alexander, Kaitlin; Weaver, Andrew J.; Crespin, Elisabeth; Fichefet, Thierry; Goosse, Hugues; Philippon-Berthier, Gwenaëlle; Edwards, Neil R.; Holden, Philip B.; Eliseev, Alexey V.; Mokhov, Igor I.; Feulner, Georg; Kienert, Hendrik; Perrette, Mahé; Schneider von Deimling, Thomas; Forest, Chris E.; Friedlingstein, Pierre; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Kawamiya, Michio; Tachiiri, Kaoru; Kicklighter, David; Monier, Erwan; Schlosser, Adam; Sokolov, Andrei; Matsumoto, Katsumi; Tokos, Kathy S.; Olsen, Steffen M.; Pedersen, Jens O. P.; Ridgwell, Andy; Shaffer, Gary; Yoshimori, Masakazu; Zeng, Ning and Zhao, Fang (2013). Long-term climate change commitment and reversibility: an EMIC intercomparison. Journal of Climate, 26(6) pp. 5782–5809.

Full text available as:
[img]
Preview
PDF (Accepted Manuscript) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (9MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1175/JCLI-D-12-00584.1
Google Scholar: Look up in Google Scholar

Abstract

This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to: (i) quantify the climate change commitment of different radiative forcing trajectories, and (ii) explore the extent to which climate change is reversible on human timescales. All commitment simulations follow the four Representative Concentration Pathways (RCPs) and their extensions to 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near pre-industrial values in most models for RCPs 2.6–6.0. The MOC weakening is more persistent for RCP 8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs for RCPs 4.5–8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination of CO2 emissions in all EMICs. Restoration of atmospheric CO2 from RCP to pre-industrial levels over 100–1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to pre-industrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2.

Item Type: Article
Copyright Holders: 2013 American Meteorological Society
ISSN: 1520-0442
Project Funding Details:
Funded Project NameProject IDFunding Body
ERMITAGE265170EU FP7
Extra Information: This article is included in the (C4MIP) Climate–Carbon Interactions in the CMIP5 Earth System Models special collection.
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
International Development & Inclusive Innovation
Item ID: 37694
Depositing User: Philip Holden
Date Deposited: 30 May 2013 08:56
Last Modified: 10 Feb 2017 00:28
URI: http://oro.open.ac.uk/id/eprint/37694
Share this page:

Altmetrics

Scopus Citations

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

▼ Automated document suggestions from open access sources

Actions (login may be required)

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk