The Open UniversitySkip to content
 

The influence of global self-heating on the Yarkovsky and YORP effects

Rozitis, B. and Green, S. F. (2013). The influence of global self-heating on the Yarkovsky and YORP effects. Monthly Notices of the Royal Astronomical Society, 433 pp. 603–621.

Full text available as:
[img]
Preview
PDF (Accepted Manuscript) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.1093/mnras/stt750
Google Scholar: Look up in Google Scholar

Abstract

In addition to collisions and gravitational forces, there is a growing amount of evidence that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are primary mechanisms that are fundamental to the physical and dynamical evolution of small asteroids. The Yarkovsky effect causes orbital drift, and the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect causes changes in the rotation rate and pole orientation. We present an adaptation of the Advanced Thermophysical Model to simultaneously predict the Yarkovsky and YORP effects in the presence of global self-heating that occurs within the large concavities of irregularly shaped asteroids, which has been neglected or dismissed in all previous models. It is also combined with rough surface thermal-infrared beaming effects, which have been previously shown to enhance the Yarkovsky orbital drift and dampen on average the YORP rotational acceleration by orders of several tens of per cent. Tests on all published concave shape models of near-Earth asteroids, and also on 100 Gaussian random spheres, show that the Yarkovsky effect is sensitive to shadowing and global self-heating effects at the few per cent level or less. For simplicity, Yarkovsky models can neglect these effects if the level of accuracy desired is of this order. Unlike the Yarkovsky effect, the YORP effect can be very sensitive to shadowing and global self-heating effects. Its sensitivity increases with decreasing relative strength of the YORP rotational acceleration, and does not appear to depend greatly on the degree of asteroid concavity. Global self-heating tends to produce a vertical offset in an asteroid's YORP-rotational-acceleration versus obliquity curve which is in opposite direction to that produced by shadowing effects. It also ensures that at least one critical obliquity angle exists at which zero YORP rotational acceleration occurs. Global self-heating must be included for accurate predictions of the YORP effect if an asteroid exhibits a large shadowing effect. If global self-heating effects are not included, then it is found in ~75 per cent of cases that better predictions are produced when shadowing is also not included. Furthermore, global self-heating has implications for reducing the sensitivity of the YORP effect predictions to detailed variations in an asteroid's shape model.

Item Type: Journal Item
Copyright Holders: 2013 The Authors (Published by Oxford University Press on behalf of the Royal Astronomical Society )
ISSN: 1365-2966
Keywords: radiation mechanisms - thermal; methods - numerical; celestial mechanics; minor planets, asteroids - general
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 37681
Depositing User: Simon Green
Date Deposited: 29 May 2013 13:52
Last Modified: 08 Dec 2018 13:03
URI: http://oro.open.ac.uk/id/eprint/37681
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU