Copy the page URI to the clipboard
Tariq, Faisal; Dooley, Laurence and Poulton, Adrian
(2014).
DOI: https://doi.org/10.1016/j.compeleceng.2013.04.006
Abstract
Femtocells represent a promising alternative solution for high quality wireless access in indoor scenarios where conventional cellular system coverage can be poor. They are randomly deployed by the end user, so only post deployment network planning is possible. Furthermore, this uncoordinated deployment creates severe interference to co-located femtocells, especially in dense deployments. This paper presents a new architecture using a generalised virtual cluster femtocell (GVCF) paradigm, which groups together FAP into logical clusters. It guarantees severely interfering and overlapping femtocells are assigned to different clusters. Since each cluster operates on different band of frequencies, the corresponding virtual cluster controller only has to manage its own FAPs, so the overall system complexity is low. The performance of the GVCF algorithm is analysed from both a resource availability and cluster number perspective. Simulation results conclusively corroborate the superior performance of the GVCF model in interference mitigation, particularly in high density FAP scenarios.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 37630
- Item Type
- Journal Item
- ISSN
- 0045-7906
- Keywords
- femtocell; interference management; resource allocation; heterogeneous networks; virtual clustering
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Computing and Communications
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
- Centre for Research in Computing (CRC)
- Copyright Holders
- © 2013 Elsevier Ltd.
- Depositing User
- Faisal Tariq