The Open UniversitySkip to content
 

A model-based constraint on CO2 fertilisation

Holden, P. B.; Edwards, N. R.; Gerten, D. and Schaphoff, S. (2013). A model-based constraint on CO2 fertilisation. Biogeosciences, 10(1) pp. 339–355.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (2MB) | Preview
DOI (Digital Object Identifier) Link: https://doi.org/10.5194/bg-10-339-2013
Google Scholar: Look up in Google Scholar

Abstract

We derive a constraint on the strength of CO2 fertilisation of the terrestrial biosphere through a “top-down” approach, calibrating Earth system model parameters constrained by the post-industrial increase of atmospheric CO2 concentration. We derive a probabilistic prediction for the globally averaged strength of CO2 fertilisation in nature, for the period 1850 to 2000 AD, implicitly net of other limiting factors such as nutrient availability. The approach yields an estimate that is independent of CO2 enrichment experiments. To achieve this, an essential requirement was the incorpo- ration of a land use change (LUC) scheme into the GENIE Earth system model. Using output from a 671-member ensemble of transient GENIE simulations, we build an emulator of the change in atmospheric CO2 concentration change since the preindustrial period. We use this emulator to sample the 28-dimensional input parameter space. A Bayesian calibration of the emulator output suggests that the increase in gross primary productivity (GPP) in response to a doubling of CO2 from preindustrial values is very likely (90 % confidence) to exceed 20 %, with a most likely value of 40–60 %. It is important to note that we do not represent all of the possible contributing mechanisms to the terrestrial sink. The missing processes are subsumed into our calibration of CO2 fertilisation, which therefore represents the combined effect of CO2 fertilisation and additional missing processes. If the missing processes are a net sink then our estimate represents an upper bound. We derive calibrated estimates of carbon fluxes that are consistent with existing estimates. The present-day land–atmosphere flux (1990–2000) is estimated at −0.7 GTC yr−1 (likely, 66 % confidence, in the range 0.4 to −1.7 GTC yr−1). The present-day ocean–atmosphere flux (1990–2000) is estimated to be −2.3 GTC yr−1 (likely in the range −1.8 to −2.7 GTC yr−1). We estimate cumulative net land emissions over the post-industrial period (land use change emissions net of the CO2 fertilisation and climate sinks) to be 66 GTC, likely to lie in the range 0 to 128 GTC.

Item Type: Journal Item
Copyright Holders: 2013 The Authors
ISSN: 1726-4189
Project Funding Details:
Funded Project NameProject IDFunding Body
ERMITAGE265170EU FP7
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 36436
Depositing User: Philip Holden
Date Deposited: 31 Jan 2013 10:24
Last Modified: 15 Jan 2019 07:02
URI: http://oro.open.ac.uk/id/eprint/36436
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU