Rapid Eocene erosion, sedimentation and burial in the eastern Himalayan syntaxis and its geodynamic significance

How to cite:
Xu, Wang-Chun; Zhang, Hong-Fei; Harris, Nigel; Guo, Liang and Pan, Fa-Bing (2013). Rapid Eocene erosion, sedimentation and burial in the eastern Himalayan syntaxis and its geodynamic significance. Gondwana Research, 23(2) pp. 715–725.

For guidance on citations see FAQs.

© 2012 International Association for Gondwana Research

Version: Proof

Link(s) to article on publisher's website:
http://dx.doi.org/doi:10.1016/j.gr.2012.05.011

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.
Rapid Eocene erosion, sedimentation and burial in the eastern Himalayan syntaxis and its geodynamic significance

Wang-Chun Xu a,⁎, Hong-Fei Zhang a,⁎, Nigel Harris b, Liang Guo a, Fa-Bing Pan a

a State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, PR China
b Department of Environment, Earth and Ecosystems, The Open University, Milton Keynes, MK7 6AA, UK

1. Introduction

Many studies have demonstrated that continental crust can be subducted to depths in excess of at least 80 km, possibly to depths of 200 to 350 km (Xu et al., 1992; Yang et al., 1993; Dobrzhinetskaya et al., 1996; Bozhilov et al., 1999; Ye et al., 2000; Zheng, 2003; Liu et al., 2007a, 2008a). During the deep subduction, continental crust underwent high-pressure (HP) to ultrahigh-pressure (UHP) metamorphism and resulted in the formation of various HP and UHP metamorphic rocks in the orogen. Because of the buoyancy of felsic continental crust, exhumation of deeply subducted continental crust is hypothesized to follow slab breakoff that occurs at the transition zone between the continental and oceanic lithosphere (Zheng et al., 2009). These exhumed rocks provide an insight into the subduction of continental crust.

The Indian continent has been subducted under the Eurasian continent, forming the Himalayan-Tibetan orogen, one of the youngest and most spectacular orogens on Earth (Yin and Harrison, 2000). To better understand the Indian continental subduction, investigations that were carried out over recent decades have focused largely on the Himalayan metamorphic and magmatic rocks of the Indian plate that form the footwall of the subduction zone (Tonarini et al., 1993; Guillot et al., 1997; de Sigoyer et al., 2000; Ding et al., 2001; O’Brien et al., 2001; Kaneko et al., 2003; Mukherjee et al., 2003; Lee et al., 2005; Parrish et al., 2006; Liu et al., 2007b; Guillot et al., 2008; Booth et al., 2009; Cottle et al., 2009; Xu et al., 2010). The hanging wall of the subduction zone, known as the southern Lhasa terrane, is dominated by Jurassic–Paleocene magmatic rocks related to the tectono-thermal evolution of an Andean-type arc (Mo et al., 2003; Chu et al., 2006; Mo et al., 2007; Mo et al., 2008; Wen et al., 2008; Chiu et al., 2009; Ji et al., 2009; Chu et al., 2011; Xia et al., 2011; Zhu et al., 2011b, 2012; Guan et al., 2012). In the southern Lhasa, studies of the metamorphic assemblages are comparatively sparse (Harris et al., 1988; Li et al., 2009; Yang et al., 2009; Dong et al., 2010, 2011; Zhang et al., 2010b).

In the eastern Himalayan syntaxis (EHS), high-grade metamorphic rocks (Bomi Group) are well exposed by rapid uplift and erosion (Burg et al., 1997). The Bomi Group consists of gneiss, migmatite, mica schist, amphibolite and marble. The Bomi Group was previously...
been variably estimated from ~40 Ma to ~24 Ma (Ding et al., 2001; al., 2009). The age of peak metamorphism for the HP granulites has and Zhong, 1997; Ding and Zhong, 1999; Geng et al., 2006; Booth et

2. Geological setting and sample description

2.1. Regional geology

The eastern Himalayan syntaxis is the eastern termination of the Himalaya collisional orogen (Fig. 1). The main structural fabric and lithological features of the Himalaya limit an uplifted area at Namche Barwa and coincide with the ‘U-turn’ of the Yalu-Tsangpo River (Burg et al., 1998; Zeitler et al., 2001). The EHS comprises three major tectono-stratigraphic units (Geng et al., 2006): (1) the Namche Barwa Group of the Himalayan unit; (2) the Indus–Yarlung Suture unit (IYS); and (3) the Gangdese unit. The northernwestern and southeast-eastern contacts between the Namche Barwa Group and the Gangdese unit are marked by the sinistral Dongjiu–Miling Fault and dextral Aniqiao Fault, respectively. The syntaxis is cut at its northeastern tip by the active dextral Jiali–Parlung Fault (Burg et al., 1997, 1998; Zhang et al., 2004).

The Namche Barwa Group, the core of the EHS, includes layered felsic gneisses that were locally migmatized (Burg et al., 1998). According to recent geological mapping (Geng et al., 2006), the Namche Barwa Group can be subdivided into three subunits: Zhibai Formation, Duoxiongla Complex and Paixiang Formation, separated by ductile faults (Xu et al., 2008, 2012). The Zhibai Formation comprises garnet-bearing gneisses containing sporadic boudins of HP granulite, with peak metamorphic temperature–pressure conditions estimated at ~850 °C and 14–18 kbar (Zhong and Ding, 1996; Liu and Zhong, 1997; Ding and Zhong, 1999; Geng et al., 2006; Booth et al., 2009). The age of peak metamorphism for the HP granulites has been variably estimated from ~40 Ma to ~24 Ma (Ding et al., 2001; Liu et al., 2007b; Xu et al., 2010; Zhang et al., 2010b; Su et al., 2012). The Duoxiongla Complex comprises migmatitic gneisses and orthogneisses with protolith ages ranging from 1.6 Ga to 1.8 Ga, as determined by U–Pb zircon dating (Guo et al., 2008; Zhang et al., 2012). The Paixiang Formation is composed of felsic gneisses with subordinate diopside and forsterite-bearing marbles (Geng et al., 2006). The Namche Barwa Group is intruded by Neogene granitoids with ages of ~13–3 Ma (Burg et al., 1998; Ding et al., 2001; Booth et al., 2004).

The IYS unit separates the Himalaya unit (Namche Barwa Group in the Indian plate) from the south of the Gangdese unit (Lhasa terrane in the Asian plate) to the north (Fig. 1). It is a continuous zone, 2–10 km wide, consisting of highly deformed and metamorphosed sedimentary and ultramafic–mafic rocks, the latter representing a Neo-Tethyan ophiolite (Geng et al., 2006). In the EHS, the geochemistry of the IYS mafic rocks indicate a back-arc basin affinity (Geng et al., 2006), comparable to mafic rocks that crop out to the west at Xigaze and Zedang regions. Clinoxyroxene 40Ar/39Ar dating for the IYS mafic rocks yielded a crystallization age of 200 ± 4 Ma (Geng et al., 2004).

The Gangdese unit includes the Nyinching Group, the Bomi Group, Paleozoic–Mesozoic cover strata, and abundant Mesozoic–Cenozoic granites (Fig. 1). The Nyinching Group comprises gneisses, schists, marbles and minor granulites. These rocks have experienced upper amphibolite-facies metamorphism, locally rising to granulite grade (Zhang et al., 2008; Dong et al., 2008). Detrital zircon age data suggest that the maximum depositional age of the Nyinching Group is no older than 490 Ma (Zhang et al., 2008; Dong et al., 2010). The Bomi Group is exposed over the northern and eastern margin of the EHS. It can be divided into three subunits (Zheng et al., 2003): (1) the lower Bomi Group with gneisses, migmatites, schists, amphibolites and minor marbles; (2) the middle Bomi Group that consists of gneisses, migmatites and amphibolites; and (3) the upper Bomi Group that is dominated by gneisses. The metamorphic P–T condition for the Bomi Group was estimated at 3–8 kbar and 575–640 °C (XBGMR, 1995; Zheng et al., 2003) or at ~10.8 kbar and ~840 °C (Booth et al., 2009). The Bomi Group has been interpreted to represent the Precambrian metamorphic basement of the Lhasa terrane (Li, 1955; Dewey et al., 1988; Zheng et al., 2003). The Gangdese unit granites were mostly emplaced during two intrusive episodes, at ~133–110 Ma and at ~66–57 Ma (Booth et al., 2004, 2009; Chiu et al., 2009; Zhang et al., 2010a; Guo et al., 2012). Chiu et al. (2009) suggested that the early Cretaceous granites were probably formed in a post-collisional regime.

Fig. 1. Sketch map of the eastern Himalayan syntaxis, showing sample location (modified after Zheng et al. (2003)). Inset denotes the location of study area in southern Asia. Abbreviations: A = lower Bomi Group; B = middle Bomi Group; C = upper Bomi Group; BNS = Bangong–Nujiang Suture zone; IYS = Indus–Yarlung Suture zone; WHS = the western Himalayan syntaxis; and EHS = the eastern Himalayan syntaxis. Zircon U–Pb ages are from Chung et al. (2003), Booth et al. (2004), Zhang et al. (2008), Chiu et al. (2009), and our unpublished data.
in response to the Late Jurassic–Early Cretaceous collision between the Qiangtang and Lhasa terrane. The Late Cretaceous–Paleocene granites resulted from northward subduction of the Neo-Tethys during late Mesozoic time (Chiu et al., 2009; Zhang et al., 2010c; Guo et al., 2011). The Late Cretaceous granites were intruded by the later muscovite granite, two-mica granite and garnet granite, ranging from ~26–21 Ma in age (Ding et al., 2001; Chung et al., 2003; Booth et al., 2004; Zhang et al., 2008, 2010a; Guo et al., 2011). These Late Oligocene–Early Miocene granites resulted from partial melting of thickened lower crust (Chung et al., 2003; Booth et al., 2004).

2.2. Sample description

The lower Bomi Group is well exposed in the northern margin of the EHS (Fig. 1) as seen on the road from Pailong to Tongmai. Our field observation shows that the mica schists in the EHS occur as layers ranging from several meters to several tens of meters in thickness, whereas marbles occur as thin layers or lenses (Fig. 2b). The mica schists are foliated, as defined by aligned biotite, amphibole and muscovite. The migmatite consists of ~70% mesosome (gray felsic gneisses) and ~30% garnet-bearing leucosome (Fig. 2a). Aligned biotite flakes in the felsic gneisses define the foliation, which is parallel to the foliation of the mica schist. The leucosomes are typically ~10 cm in thickness and tend to form sub-parallel arrays, which are consistent with the foliation orientation of the felsic gneisses. The contact between the migmatite and mica schist is not observed. The gneiss sample T824 is composed of plagioclase (~25%), K-feldspar (~40%), quartz (~25%), biotite (~7%), and muscovite (~4%), with minor amounts of zircon and Fe–Ti oxides (Fig. 3d). The leucosome sample T823, collected from the same outcrop as former sample, is composed of plagioclase (~30%), quartz (~50%), garnet (~15%), muscovite and biotite (~4%) and accessory zircon and Fe–Ti oxides (Fig. 3c). Two further samples were collected from the neighboring outcrop; a garnet–mica schist (sample T818) and a marble (sample T819). The schist sample T818 consists mainly of plagioclase (~50%), quartz (~16%), biotite (~15%), amphibole (~12%), garnet

Please cite this article as: Xu, W.-C., et al., Rapid Eocene erosion, sedimentation and burial in the eastern Himalayan syntaxis and its geodynamic significance, Gondwana Res. (2012), doi:10.1016/j.gr.2012.05.011
formed by can be accounted for by a combination of lead loss at a de
crease the detection limit and improve precision (Hu et al., 2008).

3. Analytical methods

Zircons were separated by heavy-liquid and magnetic methods and then purified by hand picking under a binocular microscope. Zir-
con crystals were mounted in an epoxy disk and then were polished. Cathodoluminescence (CL) imaging was carried out at the State Key Laboratory of Continental Dynamics, Northwest University, Xi’an, China. Zircons were selected and analyzed synchronously for trace-
element contents and isotopic compositions using LA-ICP-MS at the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China. Detailed operating conditions for the laser ablation system and the ICP-MS instrument and data reduction are the same as described by Liu et al. (2008b, 2010a,b). Laser sampling was performed using a GeoLas 2005. An Agilent 7500a ICP-MS instrument was used to acquire ion-signal intensities. The laser spot is 32 μm in diameter. Helium was applied as a carrier gas. Argon was used as the make-up gas and mixed with the carrier gas via a T-connector before entering the ICP. Nitrogen was added into the central gas flow (Ar+He) of the Ar plasma to de-
crease the detection limit and improve precision (Hu et al., 2008). Each analysis incorporated a background acquisition of approximately 20–30 s (gas blank) followed by 50 s data acquisition from the sample. The Agilent Chemstation was utilized for the acquisition of each individual analysis. Off-line selection and integration of back-
ground and analyte signals, and time-drift correction and quantitative calibration for trace element analyses and U–Pb dating were per-
formed by ICPMSDataCal (Liu et al., 2008b, 2010a).

Zircon 91500 was used as external standard for U–Pb dating, and was analyzed twice every 5 analyses. Time-dependent drifts of U–Th–Pb isotopic ratios were corrected using a linear interpolation (with time) for every 5 analyses according to the variations of 91500 (i.e., 2 zircon 91500 + 5 samples + 2 zircon 91500) (Liu et al., 2010a). Preferred U–Th–Pb isotopic ratios used for 91500 are from Wiedenbeck et al. (1995). The uncertainty of preferred values for the external standard 91500 was propagated to the ultimate results of the samples. The common Pb correction is computed by the EXCEL program of ComPbCorr#3–151 (Andersen, 2002), assuming that the observed 206Pb/238U, 207Pb/235U and 208Pb/232Th ratios for a discordant zircon can be accounted for by a combination of lead loss at a defined time. Concordia diagrams and weighted mean calculations were made using Isoplot/Ex_ver3 (Ludwig, 2003). Trace-element compositions of zircons were calibrated against multiple-reference materials (BCR-2G, BIR-1G and GSE-1G) combined with internal standardization (Liu et al., 2010a). The preferred values of element concentrations for the USGS reference glasses are from the GeoReM database (http://
greom.mpch-mainz.gwdg.de/).

4. Results

4.1. Zircon U–Pb geochronology and trace elements

Representative zircon CL images, U–Pb Concordia plots and chondrite-normalized REE pattern for zircons are shown in Figs. 4, 5 and 6, respectively. LA-ICP-MS zircon U–Pb and trace-elements data are listed in the supplemental electronic data tables (Tables A and B). The errors for individual U–Pb analyses are given in 1σ and uncer-
tainties in Concordia diagrams are quoted at 95% level (2σ).

4.1.1. Garnet–mica schist

Most zircons from sample T818 are euhedral prismatic grains, 120–300 μm in length, with large length-to-width ratios ranging from 5:1 to 10:1, which suggest rapid crystallization in volcanic rocks (Hoskin and Schaltegger, 2003). CL images reveal that these grains are composite with an oscillatory zoned core, surrounded by a weakly luminescent unzoned rim (Fig. 4a). The boundary between the core and rim is rounded, straight or haybayed, suggesting possible resorption and recrystallization (Corfu et al., 2003). Both the zircon morphology and internal structure suggest that the cores are mag-
matic and the rims are metamorphic in origin (Vavra et al., 1996, 1999; Corfu et al., 2003).

Fifty-eight analyses on zircon cores from sample T818 yielded 206Pb/238U ages of 63.0–46.8 Ma, with a dominant cluster of 206Pb/238U ages at ~58 Ma. Eight analyses on zircon rims gave 206Pb/238U ages of 38–28 Ma (Fig. 5a). The cores have U of 114–3633 ppm, Th of 49.2–
2236 ppm and Th/U values of 0.26–1.53. The rims have U of 244–
1827 ppm, Th of 28.8–172 ppm and Th/U ratios of 0.03–0.21 (excepting a single Th/U of 0.74). The low Th/U ratios for the rims are consistent with a metamorphic origin (Rubatto, 2002). Both the cores and rims have steep chondrite-normalized REE patterns with pronounced positive Ce anomalies and negative Eu anomalies (Fig. 6a). The rims show lower HREE contents than the cores, reflecting the synchronously crystallization of garnet during formation of the zircon rims. This is consistent with the occurrence of garnet in the host rock (Fig. 3a).

4.1.2. Marble

Most zircons from marble sample T819 are prismatic crystals of variable length, but generally have rounded terminations. They have grain sizes of 50–150 μm in length, with ratios of length to width ranging from 1:1 to 4:1. Their CL images (Fig. 4b) exhibit complex core and rim structures. The cores are commonly angular with oscillatory zoning and resorption, interpreted as inherited magmatic zir-
cons (Corfu et al., 2003). The weakly luminescent rims are unzoned, implying that they are metamorphic (Vavra et al., 1996, 1999; Corfu et al., 2003). The contacts between the luminescent cores and the weakly luminescent rims are angular, sharp, and cut across the zonation patterns in the cores (Fig. 4b).

Twenty-seven zircon cores were dated. They are concordant and near-concordant, and yielded 206Pb/238U ages of 62.0–41.5 Ma (Fig. 5b). The cores have U of 136–7977 ppm, Th of 103–3013 ppm and Th/U values of 0.19–0.94. Fourteen analyses on zircon rims gave 206Pb/238U ages of 37.4–23.7 Ma. The rims have U of 247–5739 ppm, Th of 10.4–
610 ppm and Th/U ratios of 0.01–0.36. Both the cores and rims show enrichment in HREE, a positive Ce anomaly and a negative Eu anomaly, except for a few egregious analyses (Fig. 6b). Rims show much steeper HREE patterns than do the cores.

4.1.3. Leucosome

Zircons from leucosome sample T823 are short prismatic crystals, 100–150 μm in length, with ratios of length to width ranging from 2:1

Please cite this article as: Xu, W.-C., et al., Rapid Eocene erosion, sedimentation and burial in the eastern Himalayan syntaxis and its geodynamic significance, Gondwana Res. (2012), doi:10.1016/j.gr.2012.05.011
to 3:1. In CL images, zircons commonly show complicated core–rim structures. The cores are rounded or subrounded and are unzoned with relatively strong luminescence brightness (Fig. 4c). The rims display great variation in their thickness and internal structure. Some rims, characterized by oscillatory zoning, are suggestive of magmatic zircon (Corfu et al., 2003). However, other rims exhibit

Fig. 4. Representative cathodoluminescence images of zircons from (a) the garnet-mica schist sample T818, (b) the marble sample T819, (c) the leucosome sample T823, and (d) the felsic gneiss sample T824. The circles show LA-ICP-MS dating spots and corresponding apparent ages. C = core, M = mantle, and R = rim.

Fig. 5. Concordia diagrams of LA-ICP-MS U–Pb dating for zircons from (a) garnet-mica schist sample T818, (b) marble sample T819, (c) leucosome sample T823 and (d) felsic gneiss sample T824.

Please cite this article as: Xu, W.-C., et al., Rapid Eocene erosion, sedimentation and burial in the eastern Himalayan syntaxis and its geodynamic significance, Gondwana Res. (2012), doi:10.1016/j.gr.2012.05.011
planar or no zoning (Fig. 4c). These characteristics of the zircon rims have been observed in zircons crystallizing from an anatectic melt (Wu and Zheng, 2004). In addition, many zircons exhibit an extremely narrow (<5 μm) outer rim with high CL intensity. It may represent later thermal activity but their narrow width has precluded precise dating.

Twenty-five analyses of zircon rims define a cluster of 206Pb/238U ages with a weighted mean of 36.9±0.5 Ma (2σ; MSWD=3.4) (Fig. 5c), which is considered as the timing of anatexis. They have U of 680–1516 ppm, Th of 48–143 ppm and Th/U of 0.03–0.16. The low Th/U ratios for the rims are consistent with a metamorphic origin (Rubatto, 2002). Fifteen analyses were undertaken on the inherited zircon cores. They gave variable U–Pb ages of 171–3211 Ma, with a peak at ~1180 Ma (Fig. 7f). They have U of 13.1–3414 ppm, Th of 10.9–1452 ppm and Th/U of 0.03–1.50. The cores have steep chondrite-normalized REE patterns with both pronounced positive Ce anomalies and negative Eu anomalies (Fig. 6c). In contrast, the rims have strikingly lower HREE contents than the cores, and show flat HREE patterns, which indicate the simultaneous crystallization of garnet during formation of the zircon rims. This is supported by the presence of garnet in the host rock (Fig. 3c).

4.1.4. Felsic gneiss

Most zircons from gneiss sample T824 show short to long prismatic crystals, but generally have rounded terminations. They have grain sizes of 100–200 μm in length, with ratios of length to width ranging from 1:1 to 5:1. In CL images, they commonly show complicated core–mantle–rim structures (Fig. 4d). The cores are subrounded with oscillatory zoning showing relatively weak luminescence, whereas the mantles exhibit oscillatory zoning with strong luminescence (Fig. 4d). Both core and mantle appear to be magmatic in origin (Corfu et al., 2003). The rims, however, exhibit planar zoning or no zoning (Fig. 4d), which is typical of a metamorphic origin (Vavra et al., 1996, 1999; Corfu et al., 2003). The boundaries between the oscillatory and planar or unzoned domains are often blurred, implying that the metamorphic rims are probably produced by the later thermal alteration.

Twelve zircon mantle analyses show consistent 206Pb/238U ages, with a weighted mean 206Pb/238U age of 50.6±0.8 Ma (2σ; MSWD=0.4), representing the magma crystallization age. Nine rim analyses yielded 206Pb/238U ages of 37.7–27.0 Ma (Fig. 5d). Ten cores were dated, of which one analysis has a 206Pb/238U age of 98.3 Ma and the remaining analyses yielded 206Pb/238U ages ranging from 73.9±0.8 Ma to 59.0±1.0 Ma (Fig. 5d). The mantles and rims show similar U and Th compositions. Both have U of 207–517 ppm, Th of 131–247 ppm and Th/U ratios of 0.37–0.72. The cores have higher U (500–1997 ppm) and Th (219–969 ppm) contents than the mantles and rims, but their Th/U ratios (0.24–0.81) are not distinct from the mantles and rims. All the core–mantle–rims have similar REE compositions, characterized by enrichment in HREE, a positive Ce anomaly and a marked negative Eu anomaly (Fig. 6d). It would appear that the protolith of the felsic gneiss was

![Fig. 6. Chondrite-normalized REE patterns for zircons from the metamorphic rocks in the lower Bomi Group. (a) The sample T818, (b) the sample T819, (c) the sample T823 and (d) the sample T824. Normalizing values are from Boyton (1984).](image-url)

-50.6 Ma old and it was metamorphosed to create rims during ~38–27 Ma.

5. Discussion

5.1. Provenance and tectonic affinity of the lower Bomi Group

The lower Bom\i Group of Lhasa terrane consists of gneiss, mica schist, migmatite, amphibolite and marble, all of which have been metamorphosed under upper-amphibolite facies conditions. Previous studies have revealed that the protoliths of the mica schists are pyroclastics (XBGMR, 1995; Zheng et al., 2003). This is consistent with their petrography and zircon morphology. Both mica schist and marble are supracrustal components of the lower Bomi Group. Most of the analyzed cores of zircon grains from the mica schist (sample T818) and the marble (sample T819) preserve an oscillatory zoning pattern and have relatively high Th/U values of >0.2, indicating that these inherited detrital zircons are of magmatic origin (Corfu et al., 2003). Furthermore, these zircon cores have relatively high REE contents and distinctly fractionated REE patterns, with enrichment in HREE and depletion of LREE, typical of magmatic zircons (Hoskin and Schaltegger, 2003). Thus, their U–Pb zircon ages would indicate the magmatic events of the provenance of the lower Bomi Group. The detrital zircon ages from the marble (sample T819) and the mica schist (sample T818) range from ~62 Ma to ~41.5 Ma and between ~63 Ma and ~46.8 Ma, respectively; no ages older than 63 Ma have been found. These ages from the detrital zircons are consistent with the magma crystallization ages of the Gangdese magmatic arc (Fig. 7a, b), suggesting that the Gangdese magmatic arc could be the provenance for the lower Bomi Group. The Gangdese magmatic arc, the southernmost part of the Asian continent, is characterized by extensive Jurassic–Paleogene calc-alkaline granitoids (Wen et al., 2008; Ji et al., 2009; Chu et al., 2011; Zhu et al., 2011b) and Cretaceous to Paleogene non-marine volcanic sequences (e.g. the Linzizong Formation) (Mo et al., 2003; Zhou et al., 2004; Mo et al., 2008; Lee et al., 2009). Geochronological data show that the ~65–41 Ma is the most prominent period of magmatism in the Lhasa terrane (Fig. 7a, b). The abundant Paleogene ages and the absence of older ages (>63 Ma) of the detrital zircons indicate that the Gangdese magmatic arc could be the only source for the lower Bomi Group. The rapid uplift since ~40 Ma ago and subsequent erosion of the east Gangdese arc (Chung et al., 1998) is consistent with the sedimentation records from the lower Bomi Group.

The minimum detrital magmatic zircon age (~41.5 Ma) from the marble implies that the maximum depositional age for the lower Bomi Group is less than ~41.5 Ma. Thus we conclude that the lower Bomi Group cannot represent Precambrian basement for...

Fig. 7. U–Pb zircon age histograms. (a) Gangdese granitoids; (b) Gangdese volcanic rocks; (c) metasedimentary rocks from the lower Bomi Group; (d) Tethyan sedimentary rocks; (e) metasedimentary rocks for the lower Nyingchi Group; and (f) leucosome sample T823 in the lower Bomi Group. N = number of samples, n = total number of analyses. Star indicates age of the felsic gneiss sample T824. The 207Pb/206Pb ages were used for those older than 1000 Ma, and 206Pb/238U ages were used for younger zircons. Data sources are from Coulon et al. (1986), Zhou et al. (2004), Dong et al. (2005), Mo et al. (2005), McQuarrie et al. (2008), Wen et al. (2008), Zhang et al. (2008), Ji et al. (2009), Lee et al. (2009), Myrow et al. (2008, 2010), Dong et al. (2010) and Zhu et al. (2008, 2011a, b).
the Lhasa terrane as has been previously assumed (Li, 1955; Dewey et al., 1988; Zheng et al., 2003). This is consistent with the findings of some recent studies on the Nyingchi Group in the western margin of the EHS and the Nyainqentanglha Group in the central Lhasa terrane (Zhang et al., 2008; Dong et al., 2010, 2011). We suggest that the lower Bomi Group may represent sediments from the residual forearc basin, similar to the Tsiojiangding Group in the Xigaze area. The Tsiojiangding Group unconformably overlies the Xigaze Group, and deposited during Paleocene (Dürr, 1996; Ding et al., 2005; Jia et al., 2005; Wu et al., 2010). It is composed of conglomerate, foraminifera-bearing sandy limestone and sandstone (Ding et al., 2005). However, the absence of ages of detrital zircons for the Tsiojiangding Group has precluded further comparing with the lower Bomi Group.

In this study, the mantles of zircon grains from the felsic gneiss (sample T824) show oscillatory zoning, high Th/U ratios and REE contents and distinctly fractionated REE patterns, with enrichment in HREE and depletion of LREE, which are typical for magmatic zircon (Corfu et al., 2003; Hoskin and Schaltegger, 2003). The mantles yielded a weighted mean 206Pb/238U age of 50.6±0.8 Ma (2σ). The weighted mean 207Pb/206Pb age from sample T823 yield a wide U-Pb age range from ~171 Ma to ~3211 Ma, with a prominent cluster at 1200–1050 Ma (Fig. 7f). The age population of the leucosome is different from its corresponding mesosome (sample T824), suggesting that the leucosome was not derived from the partial melting of the mesosome. Recently, Zhu et al. (2011a) published a set of U-Pb age data on detrital zircons from Late Triassic metasedimentary rocks in the Lhasa terrane. These U-Pb ages define a distinctive age population of ~1170 Ma, whereas those from the Tethyan Himalaya terrane define an age population of ~950 Ma (Fig. 7d). In the EHS, the detrital zircons from the lower Nyingchi Group also define an age population of ~1170 Ma (Fig. 7e), similar to the Late Triassic metasedimentary rocks in the Lhasa terrane. For the leucosome, the distinct ~1180 Ma age population of inherited zircons matches well with that of detrital zircons in the lower Nyingchi Group (Fig. 7e, f). This correlation suggests that the leucosome in the lower Bomi Group was likely derived from partial melting of the lower Nyingchi Group or its equivalent. Therefore, we propose that the sediments in the lower Bomi Group have deposited on the lower Nyingchi Group or its equivalent prior to the Indian plate subduction. During the following subduction, partial melting of the lower Nyingchi Group or its equivalent produced leucocratic magma, which intruded the overlying sediments and the Gangdese granitoids.

5.2. Eocene metamorphism of lower Bomi Group

The Tibetan–Himalayan orogen was largely created by the India–Asian collision at ~55 Ma as suggested by multidisciplinary lines of both direct and indirect evidence (Allègre et al., 1984; Patriat and Achache, 1984; Rowley, 1996; Zhu et al., 2005; Chen et al., 2010; Najman et al., 2010; Sun et al., 2010, 2012; Cai et al., 2011; Clementz et al., 2011; Wang et al., 2011). Exposure of HP metamorphic rocks within the Himalayan orogen provide crucial insights into the collision, continental subduction and exhumation process (Tonarini et al., 1993; Guillot et al., 1997; Ding et al., 2001). In the western Himalaya, the coesite-bearing UHP eclogites, occurring in the Ts Morari and Kaghan areas, have demonstrated that the continental crust of the entire northwestern part of the Indian plate was subducted beneath the Kohistan–Ladakh arc to a minimum depth of 90 km (O’Brien et al., 2001; Mukherjee et al., 2003). Geochronological investigations for the UHP eclogites show that their peak-pressure metamorphism occurred in the Early Eocene (55–46 Ma) and then exhumed rapidly to upper crust depth before ~40 Ma (de Sigoyer et al., 2000; Kaneko et al., 2003; Leech et al., 2005; Parrish et al., 2006). It implies a rapid geodynamic process of continental subduction followed by exhumation in the western Himalaya.

In the EHS, HP granulites are present in the Himalayan unit but as yet no eclogite has been identified (Zhong and Ding, 1996; Liu and Zhong, 1997). Geochronological study of the granulite-facies metamorphic rocks has yielded contentious results, with peak metamorphic age ranging from ~40 Ma to ~24 Ma (Ding et al., 2001; Liu et al., 2007b; Xu et al., 2010; Zhang et al., 2010b; Su et al., 2012). As a result, the subduction process in the eastern part of the orogen is poorly constrained. Recently, Zhang et al. (2010b) proposed that the eastern Himalayan syntaxis represents a paired metamorphic belt formed during the Cenozoic Himalayan collisional orogeny. The hanging wall (the southern Lhasa terrane) is characterized by the high-temperature conditions with abundant granite intrusion, while the footwall (the Himalayan unit) registers penecontemporaneous HP metamorphism. We now propose that some lithologies within the hanging wall could also be involved in the subduction process.

The lower Bomi Group, which now lies in the hanging wall of the continental subduction zone in the Lhasa terrane, has been subjected to amphibolite-facies metamorphism. The zircons from the mica schist, marble and felsic gneiss examined in this study generally show metamorphic rims characterized by uniform CL images and lacking any zoning. Moreover, these zircon rims show equal or lower REE contents than their inherited magmatic zircon precursors, and some have very low Th/U values (0.01–0.02), typical of metamorphic zircons (Hoskin and Schaltegger, 2003; Harley and Kelly, 2007). Our geochronological work indicates that amphibolite-grade metamorphism was initiated at ~38 Ma and continued to ~24 Ma, as recorded in zircon rims from both the metamorphic supracrustal rocks and the felsic gneiss. Furthermore, the age of 36.9±0.5 Ma from zircons taken from the leucosome of the migmatite provides a precise age for crustal melting. The ~37 Ma zircon rims from leucosome T823 are HREE depleted and show flat HREE patterns, similar to values expected for HP metamorphic zircons that grew in competition with garnet (Fig. 6c) (Rubatto, 2002; Rubatto and Hermann, 2007). The initial time of metamorphism is thus in good agreement with the time of the anatexis and also with metamorphic ages recorded in the Nyingchi Group in the EHS (Zhang et al., 2010b). In order to explain the medium-grade metamorphism in the supracrustal rocks, we propose that following the Indian–Asian collision, the forearc sediments were subducted into the middle–lower crust, together with Himalayan lithologies from the Indian continental slab. The metamorphism in the hanging wall, therefore, indicates that the India–Asia collision and the following subduction of the Indian plate beneath Asia were initiated at least before ~37 Ma in the EHS. In the Namche Barwa Group of the Himalayan unit, similar metamorphic ages of ~37–32 Ma associated with the Indian continental subduction were reported by Zhang et al. (2010b). The protracted time of the Indian continental subduction recorded in both the hanging wall and footwall of the subduction zone in the EHS is markedly later than that in the western Himalaya, where the deep subduction rocks had exhumed to the upper crust depth before ~40 Ma (de Sigoyer et al., 2000; Leech et al., 2005; Parrish et al., 2006). This observation might reflect real diachronity in the timing of subduction of the Indian continent along the length of the Himalayan orogen (Guillot et al., 2008; Zhang et al., 2010b), although the metamorphic history of the eastern and western parts of the Himalayan belt appear to become broadly synchronous after ~24 Ma (Xu et al., 2010; Su et al., 2012).

5.3. Tectonic implication and a model for the EHS in the Paleogene

Our results demonstrate that the lithologies of the lower Bomi Group have been subducted to a sufficient depth to produce the amphibolite-facies metamorphism as early as the ~37 Ma. Since the

Please cite this article as: Xu, W.-C., et al., Rapid Eocene erosion, sedimentation and burial in the eastern Himalayan syntaxis and its geodynamic significance, Gondwana Res. (2012), doi:10.1016/j.gr.2012.05.011
minimum age of detrital magmatic zircons from the supracrustal rocks is ~41.5 Ma, it implies that the magatism, crustal uplift and erosion of provenance, sedimentation and metamorphism for the lower Bomi Group had taken place in a short time interval (<5 Ma), suggesting a rapid geodynamic process during the Late Eocene in the EHS. The rapid process had also happened at Late Paleocene–Early Eocene in the western Himalaya. Leech et al. (2005) attributed the rapid process to the initial India–Asian collision and the subsequent subduction of the leading edge of India continental plate at a steep angle. This interpretation is also suitable for the EHS.

Our data do not support a tectonic model in which the forearc basin was underthrust along the north-dipping Gangdese thrust during the Oligo-Miocene (Yin et al., 1994, 1999) but instead indicate that it was the continental subduction of the Indian plate that entrained the southern edge of the Lhasa terrane (the forearc sediment) into the middle-lower crust during Late Eocene. Considering the petrological and geochronological studies presented above, we propose a model of forearc sedimentation followed by imbrication and subduction of the basin to explain the evolution of the lower Bomi Group of the southern margin of the Lhasa terrane (Fig. 8). Roll-back and breakoff of the Neotethyan oceanic slab at ~60–50 Ma in the eastern Himalayan orogen (Chung et al., 2005; Lee et al., 2009), resulted in a marked intensification of magmatism in the Lhasa terrane, as indicated by large volumes of Linzing volcano rocks and the intrusion of Gangdese Batholith at ~65–41 Ma (Lee et al., 2009). The persistent northward drift of India resulted in thickening of the Tibetan continental lithosphere, isostatic uplift and erosion of the Lhasa terrane. The denuded materials were deposited into the forearc basin to the south. Continuing subduction of the Indian continent beneath Asia caused the basin lithologies to be involved in imbrication and subduction, resulting in the observed amphibolite-facies metamorphism. Simultaneously, anatectic melt derived from the basement of the Lhasa terrane was injected into the lower Bomi Group.

6. Conclusions

Petrographic and geochronological studies show that the lower Bomi Group in the east Himalayan syntaxis formed later than ~42 Ma and was dominantly sourced from the Gangdese magmatic arc. The lithologies of the lower Bomi Group are inferred to represent a forearc basin. The lower Bomi Group was subducted during the Late Eocene and subjected to amphibolite-facies metamorphism at ~37 Ma. During the Late Eocene in the EHS, a series of events, including the erosion of the Gangdese arc, sedimentation, burial and metamorphism, had taken place within a short time interval (~5 Ma). This suggests a rapid geodynamic process that associated with the initial India–Asian collision and the following subduction of the leading edge of India continental plate at a steep angle during the Eocene in the EHS. The protracted time of the Indian continental subduction in the eastern Himalaya is markedly later than that in the western Himalaya, suggesting diachronity in the timing of subduction of the Indian continent along the strike of the Himalayan orogen.

Acknowledgments

This research is supported by the Natural Science Foundation of China (grants: 41073046 and 41103019), the National Key Project for Basic Research (no. 2011CB403102), China Geological Survey (no. 1212011121261), SinoproB 04-02, the Fundamental Research Funds for National University and the Foundation for Open Projects of State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (GPMR201009).

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.gr.2012.05.011.

References

