The Open UniversitySkip to content
 

Transit algorithm performance using real WASP data

Enoch, B.; Haswell, C. A.; Norton, A. J.; Collier-Cameron, A.; West, R. G.; Smith, A. M. S. and Parley, N. R. (2012). Transit algorithm performance using real WASP data. Astronomy & Astrophysics, 548, article no. A48.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (326Kb) | Preview
DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1051/0004-6361/201219771
Google Scholar: Look up in Google Scholar

Abstract

Context. Many transiting exoplanet surveys are now in operation, observing millions of stars and searching for the periodic signals that may indicate planets orbiting these objects.

Aims. We have tested the performance of transit detection algorithms using real WASP data, avoiding the issue of generating the appropriate level of white and red noise in simulated lightcurves. We used a two-dimensional search method, the box-least-squares (BLS) algorithm, and two- and three-dimensional versions of the analysis of variance (AoV) method.

Methods. After removing any potential transiting candidate or variable objects, transits were injected into each lightcurve. We performed Monte Carlo simulations, testing the recovery of injected signals in 99 lightcurves by each algorithm.

Results. In the simulations using data from one season of WASP observations, it was determined that the BLS method should detect a total of 37% of planets and the 3D AoV 23%. Simulations to explore the effects of extending survey baseline or number of hours of observations per 24 h period, i.e. longitudinally spaced observatories, were also performed. They showed that increasing the coverage via an increase in baseline or in observational hours are equally good for maximising overall detections of transiting planets. The resulting algorithm performance was combined with actual WASP-South results to estimate that 0.08% and 0.30% of stars harbour very hot Jupiters and hot Jupiters respectively.

Item Type: Journal Article
Copyright Holders: 2012 EDP Sciences
ISSN: 1432-0746
Extra Information: 7 pp.
Keywords: planets and satellites; planetary systems
Academic Unit/Department: Science > Physical Sciences
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Item ID: 35730
Depositing User: Andrew Norton
Date Deposited: 07 Dec 2012 15:45
Last Modified: 12 Jul 2014 02:35
URI: http://oro.open.ac.uk/id/eprint/35730
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk