Abnormal prolongation of visual sensations in a human subject

How to cite:

For guidance on citations see FAQs

© 1885 The Physiological Society
Version: Version of Record
Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1113/jphysiol.1985.sp015840

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Abnormal prolongation of visual sensations in a human subject

BY I. M. BLYTHE, J. M. BROMLEY, C. KENNARD* and K. H. RUDDOCK. Department of Physics (Biophysics), Imperial College, London SW7 2BZ, and *Department of Neurology, London Hospital, London E.1

After a few seconds exposure to a high-contrast light stimulus, subject F.B. experiences an after-image of up to 3 min duration, with spatial structure similar to that of the stimulus. Psychophysical measurements establish that in association with the after-image, there is an increase in the illumination required for detection of a flashed target presented either dichoptically or monoptically with respect to the stimulus responsible for the after-image (Fig. 1). Stimuli spatially modulated at 1–2 c deg\(^{-1}\) produce after-images of significantly longer duration than those elicited by uniform fields, but fine spatial structure (\(\geq 10\) c deg\(^{-1}\)) is not perceived in the after-images. After-images of flickering or moving lights do not themselves exhibit temporal changes and all monochromatic lights yield after-images of similar colour appearance, with C.I.E. co-ordinates \(x = 0.411, y = 0.476\); \(Y \leq 42.5\). Increase in duration or illumination of the eliciting stimulus increases the duration of the after-image, as was found by Kinsbourne & Warrington (1963) for two similar cases. F.B. has normal sensitivity for detection of target movement and flicker. Her CT and NMR brain scans were both normal, but the EEG showed a minor irregularity, of a kind associated with epilepsy. The after-image duration was reduced by 30% following two months treatment with anti-convulsant drugs.

![Graph](image_url)

Fig. 1. Threshold illumination, \(I_0\), for detection of a circular test flash (diameter 3.5 deg, 0.1 s presentation every 1 s), following 5 s exposure to a circular light stimulus (diameter 30 deg, illumination 2.9 log trolands). Data for presentation of the two light stimuli to the same (+—+) and to different (●—●) eyes. Subject F.B.; white-light stimuli. In normal vision, sensitivity to the test flash recovers within 0.1 s of stimulus offset.

REFERENCE