Pattern discrimination in a human subject suffering visual agnosia

Conference Item

How to cite:

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1113/jphysiol.1986.sp016202

© 1986 The Physiological Society
Version: Version of Record
Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1113/jphysiol.1986.sp016202

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Pattern discrimination in a human subject suffering visual agnosia

Since suffering a stroke some four years ago, H. J. A. has exhibited lack of visual pattern recognition, and CT scans show areas of neuronal damage localized bilaterally in the posterior cerebral cortex (Humphreys & Riddoch, 1984). His failure to recognize familiar objects, including faces, is particularly marked for line drawings (Humphreys & Riddoch, unpublished). We have measured the time required for detection of a target element which differs in orientation from multiple, identical

![Diagram](image)

Fig. 1. A, typical stimulus pattern, of size 9/5 deg, 7/1 deg; locations of the non-overlapping elements were randomized between presentations. Four possible target orientations were presented 50 times each, in random sequence. Target elements were rotated 0 deg (null target), 30, 60 and 90 deg relative to the background elements. B, τ_1 (seconds) for H. J. A. plotted against τ_2, average values for three normal, naive subjects. The different targets are illustrated on the figure, except for continuous lines and co-linear spots, denoted ● and ○ respectively, which give similar values for all orientations. Targets presented at time X were not detected on 50% of presentations and the dot–dash line shows the locus τ_1 equal to τ_2.

background elements (Fig. 1A). Probability for detection of a given target, $P(t)$, was measured as a function of time, t, following its presentation, and τ_1, the t value for 50% probability of detection, provides a measure of discrimination performance. H. J. A.'s τ_1 values for background elements | and] are essentially normal, but become increasingly abnormal for backgrounds ||, |||, Δ and ○ (Fig. 1B). The data demonstrate that H. J. A.'s discrimination is disturbed for targets incorporating different line orientation, but not for single lines. Thus those mechanisms responsive to single lines function normally, whereas those which associate line elements into 2-D patterns are selectively disturbed.

REFERENCE