The Open UniversitySkip to content
 

The nakhlite hydrothermal brine on Mars

Bridges, John and Schwenzer, Susanne (2012). The nakhlite hydrothermal brine on Mars. Earth and Planetary Science Letters, 359-360 pp. 117–123.

DOI (Digital Object Identifier) Link: https://doi.org/10.1016/j.epsl.2012.09.044
Google Scholar: Look up in Google Scholar

Abstract

Water is the basis of habitability; and formation conditions of hydrous alteration minerals are key to temperature and chemical conditions of that water. Using new, detailed observations on nakhlite martian meteorite alteration composition, temperature and redox conditions of the water that formed the observed hydrous alteration can be determined through thermochemical modelling. We show that the nakhlite parent rocks on Mars encountered a CO2-rich hydrothermal fluid at 150≤T≤200 °C, pH 6–8 with a water:rock ratio (W/R) ≤300. Under these conditions, Fe-rich carbonate was precipitated within brittle fractures. As the fluid cooled to 50 °C, at pH 9 and W/R of 6, Fe-rich phyllosilicate precipitated, followed in turn by rapid precipitation of an amorphous gel. It was enriched in the most soluble species (e.g. K, Na), of alkaline pH, and similar to terrestrial, i.e. not seawater-influenced, dilute brines in basaltic terrains on Earth. Our results show that environments associated with this type of fluid were habitable, unlike those associated with acid-sulphate fluids. Considering the timing of the nakhlite alteration, the most likely cause is impact-generated hydrothermal alteration of the nakhlite pile at the margins of an impact crater. The martian subsurface fluid forming phyllosilicates provided habitable temperatures and many of the nutrients required for life.

Item Type: Journal Item
Copyright Holders: 2012 Elsevier B.V.
ISSN: 0012-821X
Keywords: Mars; nakhlites; water; alteration; thermochemical modeling; carbonates; smectites
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Research Group: Space
Related URLs:
Item ID: 35649
Depositing User: Susanne Schwenzer
Date Deposited: 05 Dec 2012 09:38
Last Modified: 07 Dec 2018 10:11
URI: http://oro.open.ac.uk/id/eprint/35649
Share this page:

Metrics

Altmetrics from Altmetric

Citations from Dimensions

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU