The Open UniversitySkip to content
 

A-centers and isovalent impurities in germanium: density functional theory calculations

Chroneos, Alexander; Londos, C. A. and Bracht, H. (2011). A-centers and isovalent impurities in germanium: density functional theory calculations. Materials Science and Engineering B, 176(5) pp. 453–457.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1016/j.mseb.2011.01.004
Google Scholar: Look up in Google Scholar

Abstract

In the present study density functional theory calculations have been used to calculate the binding energies of clusters formed between lattice vacancies, oxygen and isovalent atoms in germanium. In particular we concentrated on the prediction of binding energies of A-centers or oxygen interstitials that are at nearest and next nearest neighbor sites to isovalent impurities (carbon, silicon and tin) in germanium. The A-center is an oxygen interstitial atom near a lattice vacancy and is an important impurity-defect pair in germanium. In germanium doped with carbon or silicon, we calculated that most of the binding energy of the cluster formed between A-centers and the carbon or silicon atoms is due to the interaction between the oxygen interstitial atom and the carbon or silicon atoms. For tin-doped germanium most of the binding energy is due to the interaction of the oversized tin atom and the lattice vacancy, which essentially provide space for tin to relax. The nearest neighbor carbon-oxygen interstitial and the silicon-oxygen interstitial pairs are significantly bound, whereas the tin-oxygen interstitial pairs are not. The results are discussed in view of analogous investigations in isovalently doped silicon.

Item Type: Journal Article
Copyright Holders: 2011 Elsevier B.V.
ISSN: 0921-5107
Keywords: A-center; silicon; germanium
Academic Unit/Department: Mathematics, Computing and Technology > Engineering & Innovation
Item ID: 35211
Depositing User: Alexander Chroneos
Date Deposited: 08 Nov 2012 15:07
Last Modified: 08 Nov 2012 15:07
URI: http://oro.open.ac.uk/id/eprint/35211
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk