The Open UniversitySkip to content

Intrinsic and extrinsic diffusion of indium in germanium

Kube, R.; Bracht, H.; Chroneos, A.; Posselt, M. and Schmidt, B. (2009). Intrinsic and extrinsic diffusion of indium in germanium. Journal of Applied Physics, 106(6), article no. 063534.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (487kB) | Preview
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Diffusion experiments with indium (In) in germanium (Ge) were performed in the temperature range between 550 and 900°C. Intrinsic and extrinsic doping levels were achieved by utilizing various implantation doses. Indium concentration profiles were recorded by means of secondary ion mass spectrometry and spreading resistance profiling. The observed concentration independent diffusion profiles are accurately described based on the vacancy mechanism with a singly negatively charged mobile In-vacancy complex. In accord with the experiment, the diffusion model predicts an effective In diffusion coefficient under extrinsic conditions that is a factor of 2 higher than under intrinsic conditions. The temperature dependence of intrinsic In diffusion yields an activation enthalpy of 3.51 eV and confirms earlier results of Dorner et al. [Z. Metallk. 73, 325 (1982)]. The value clearly exceeds the activation enthalpy of Ge self- diffusion and indicates that the attractive interaction between In and a vacancy does not extend to third nearest neighbor sites which confirms recent theoretical calculations. At low temperatures and high doping levels, the In profiles show an extended tail that could reflect an enhanced diffusion at the beginning of the annealing.

Item Type: Journal Item
Copyright Holders: 2009 American Institute of Physics
ISSN: 1089-7550
Extra Information: This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Keywords: diffusion; elemental semiconductors; enthalpy; germanium; indium; secondary ion mass spectra; semiconductor doping; vacancies (crystal)
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Engineering and Innovation
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 35189
Depositing User: Alexander Chroneos
Date Deposited: 07 Nov 2012 14:39
Last Modified: 07 Dec 2018 22:50
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU