Defect interactions in Sn$_{1-x}$Ge$_x$ random alloys

A. Chroneos,¹,a) C. Jiang,² R. W. Grimes,¹ U. Schwingenschlögl,¹,³ and H. Bracht⁴

¹Department of Materials, Imperial College London, London SW7 2BP, United Kingdom
²Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
³PCSE Division, KAUST, P.O. Box 55455, Jeddah 21534, Saudi Arabia
⁴Institute of Material Physics, University of Münster, Wilhelm-Klemm-Straße 10, D-48149 Münster, Germany

(Received 17 May 2009; accepted 3 June 2009; published online 23 June 2009)

Sn$_{1-x}$Ge$_x$ alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn$_{1-x}$Ge$_x$ with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard’s Law are consistent with experimental results. © 2009 American Institute of Physics. [DOI: 10.1063/1.3159468]

Sn$_{1-x}$Ge$_x$ and Si$_{1-x}$Ge$_x$Sn$_x$ alloys are emerging as potentially technologically important materials for microelectronic and optoelectronic devices.¹ Bauer et al.² have synthesized single-phase monocrystalline Si$_{1-x}$Ge$_x$Sn$_x$ alloys, with a Si content of up to 32% and a Sn content of up to 10%, where the three elements occupy random substitutional sites in the diamond lattice. Sn$_{1-x}$Ge$_x$ alloys possess advantageous optical properties and offers a range of strain options and can therefore be used as buffer layers to lattice match Si or Ge substrates with most III-V and II-VI technologically relevant compounds.¹,³

Although the structure and defect processes in diamond-type random alloys such as Si$_{1-x}$Ge$_x$ have received considerable attention, the structure of Sn$_{1-x}$Ge$_x$ has not, so far, been investigated in detail.⁴⁻⁸ Previous density functional theory (DFT) studies were confined to predicting the structure of ordered Sn$_{1-x}$Ge$_x$ alloys.⁹ Here we adopt the so-called special quasirandom structure (SQS) approach¹⁰ to mimic the statistics of random Sn$_{1-x}$Ge$_x$ alloys at compositions $x=0.875$, 0.75, and 0.625, respectively (see Fig. 1). SQSs are purposefully designed periodic structures with small unit cells that closely reproduce the most relevant pair and multisite correlation functions of random alloys.¹⁰ The efficacy of this approach to describe the structure of random Si$_{1-x}$Ge$_x$ alloys has been demonstrated for a variety of systems.⁶,⁷

The doping of Ge with isovalent atoms can be technologically important for the formation of radiation-hard devices.¹¹ Presently Sn$_{1-x}$Ge$_x$ alloys with low Sn content have been synthesized experimentally and here we will focus on these compounds. The significance of vacancies (V) in the diffusion and defect processes in Ge (such as those caused by radiation damage) has been the subject of numerous studies.¹²,¹³ The aim of the present work is thus twofold: first, to establish an effective approach to model the structure of Sn$_{1-x}$Ge$_x$ alloys of high Sn content and second to study the structure of Sn$_n$V$_m$ complexes in Ge and thereby demonstrate that the computational method also generates useful results at lower Sn concentrations.

The ground state total energies of various Sn$_n$V$_m$ defect configurations in Ge and the structure of Sn$_{1-x}$Ge$_x$ alloys are calculated by means of the plane wave DFT code CASTEP.¹⁴ The plane wave basis set is expanded to a cutoff of 350 eV, in conjunction with ultrasoft pseudopotentials.¹⁵ Furthermore, a $2\times2\times2$ Monkhorst–Pack¹⁶ k-point grid and a supercell consisting of 64 atoms are used for the defect calculations but a 32 atom cell is employed for the SQS calculations. The exchange and correlation interactions are described using the generalized gradient approximation corrected density functional of Perdew–Burke–Ernzerhof.¹⁷ All calculations are performed under constant pressure conditions. For details on the convergence and efficacy of our approach, we refer to previous studies.¹⁸,¹⁹

The lattice parameters of binary group IV alloys $(A_{1−x}B_x)$ deviate from the linear interpolation of the lattice parameters of the constituent elements, i.e., they do not obey Vegard’s Law.²⁰ This deviation from linearity, $\Delta a(x)$, as a function of the composition x can be quantified by

$$\Delta a(x) = (1 - x)a_A + xa_B - a_{AB},$$

where a_A, a_B, and a_{AB} are the lattice parameters of element A, element B, and the compound $A_{1-x}B_x$, respectively. According to this definition a positive value of $\Delta a(x)$ corresponds to a negative bowing of the lattice parameter. Interestingly, Kouvetakis et al.¹¹ pointed out that the bowing is negative for Si$_{1-x}$Ge$_x$ but positive for Sn$_{1-x}$Ge$_x$. Using a similar simulation approach a negative bowing of the lattice

![FIG. 1. (Color online) 32 atom SQS for (a) $A_{0.875}B_{0.125}$, (b) $A_{0.75}B_{0.25}$, and (c) $A_{0.625}B_{0.375}$ alloys with diamond crystal structure. Blue and green spheres represent A and B atoms, respectively.](http://apl.aip.org/apl/copyright.jsp)
The parameter was predicted for Si₁₋ₓGeₓ (see Ref. 7) in better agreement with experimental studies⁵ than previous results from empirical calculations⁶ and DFT studies⁷ based on the local density approximation (LDA). In Fig. 2 we compare our data for Sn₁₋ₓGeₓ (for 0.625 ≤ x) to the experimental observations of Chizmeshya et al.⁹ The SQS results for Sn₁₋ₓGeₓ reveal a very good agreement with the experimentally observed positive bowing in the Sn₁₋ₓGeₓ series. In the present study we focus our considerations on Sn₁₋ₓGeₓ alloys with a Sn content of up to 37.5% because compounds with a low content are presently of great interest for technological applications.¹²,⁹ The defect processes in the complete compositional range of Sn₁₋ₓGeₓ and related ternary alloys will be subject of future investigations.

Sn has been found to diffuse in Ge with an activation enthalpy in the range of 2.9–3.26 eV, which can be attributed to a V- mechanism of diffusion.¹² In this context we now investigate the stability of SnV pairs as well as Sn₂V and SnV₂ complexes in otherwise pure Ge and in Si for comparison. The cluster configurations have previously been reported.¹ⁱ

The attraction between the constituents of a defect cluster can be quantified by the evaluation of binding energies. The binding energy of n Sn substitutional and m vacancies in Ge, E_b(SnₙVₘGeₙ₋ₘ⁻), is given by

\[E_b(SnₙVₘGeₙ₋ₘ⁻) = E(SnₙVₘGeₙ₋ₘ⁻) - nE(SnₙGeₙ⁻) - mE(VₘGeₙ⁻) + (n + m - 1)E(Geₙ⁻), \]

where E(SnₙVₘGeₙ₋ₘ⁻) is the energy of an N lattice site supercell (here: N=64) containing n Sn atoms, m vacancies, and N-n-m Ge atoms. In addition, E(SnₙGeₙ⁻) is the energy of a supercell containing n Sn and N-n Ge atoms, E(VₘGeₙ⁻) is the energy of a supercell containing m vacancies and N-m Ge atoms, and E(Geₙ⁻) is the energy of a supercell containing N Ge atoms. Consequently, a negative binding energy implies that the defect cluster is stable with respect to its constituent point defect components.

In a recent DFT/LDA study Höhler et al.¹² have observed that oversized impurities such as Sn or Sb, in both Ge and Si, are located between two semivacancies (referred to as the split-V configuration). Conversely, smaller dopants such as phosphorous assume the full-V configuration. Table I shows that in Ge and Si the split-V configuration is energetically favorable, but only by −0.03 and −0.02 eV, respectively.

The SnVV configuration is more stable than the VSnV configuration in both Ge and Si (see Table I) in agreement with previous predictions for related dopant-vacancy clusters.²³ This consistency indicates that in these clusters most of the binding energy is due to the VV pairs, which in turn originate from the reduction in the host lattice dangling bonds from eight, in the case of two isolated vacancies, to six when they form a VV pair. Additionally, the greater binding energies of SnV₂ clusters in Si, as compared to Ge, are due to the higher binding energies of VV pairs in Si (Table I).

The binding energy \(E_b(V−SnVGeₓ⁻) \) for adding a vacancy to an existing SnV pair is given by

\[E_b(V−SnVGeₓ⁻) = E(VSnVGeₓ⁻) - E(VGeₓ⁻) - E(SnVGeₓ⁻) + E(Geₓ⁻). \]

Using Eq. (2) this leads to

\[E_b(V−SnVGeₓ⁻) = E_b(VSnVGeₓ⁻) - E_b(SnVGeₓ⁻). \]

where \(E(VSnVGeₓ⁻) \) is the energy of an N atom supercell (here: N=64) containing N−3 Ge atoms, one vacancy and two Sn atoms. Moreover, \(E(Geₓ⁻) \) is the energy of a supercell containing N Ge atoms, \(E(VGeₓ⁻) \) is the energy of a supercell containing one vacancy, and \(E(SnVGeₓ⁻) \) is the energy of a supercell containing one Sn atom and one vacancy.

Analogous energies can be defined for adding a vacancy to SnV, i.e., \(E_b(SnV−VGeₓ⁻) \) and for adding a Sn atom to an existing VV pair, i.e., \(E_b(Sn−VVGeₓ⁻) \). In our nomenclature the hyphen determines on which side of the existing pair the extra V or Sn is added. Again, a negative energy implies that the larger cluster is more stable. The binding energies for adding a single V to an existing SnV cluster and further combinations [Eq. (3), Table I] are given in Table II. For Si, the binding energy between a SnV cluster and a vacancy, to form a SnV-V configuration, is higher than that between a Sn atom and a VV pair, whereas the V-SnV binding is energetically the least favorable.

For Si, the binding energies between two vacancies (−1.58 eV) and between a vacancy and an existing SnV pair (−1.46 eV) are similar. This is consistent with the study of

<table>
<thead>
<tr>
<th>Defect complex</th>
<th>(E_b) Ge</th>
<th>(E_b) Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>VV</td>
<td>−0.48</td>
<td>−1.58</td>
</tr>
<tr>
<td>SnVn</td>
<td>0.03</td>
<td>−0.03</td>
</tr>
<tr>
<td>SnV</td>
<td>−0.61 (−0.64⁺)</td>
<td>−1.29 (−1.30)</td>
</tr>
<tr>
<td>VSnV</td>
<td>−1.10</td>
<td>−2.76</td>
</tr>
<tr>
<td>VSnSn</td>
<td>−0.79</td>
<td>−2.18</td>
</tr>
<tr>
<td>SnVSn</td>
<td>−1.00</td>
<td>−1.86</td>
</tr>
<tr>
<td>SnVGe</td>
<td>−0.97</td>
<td>−1.81</td>
</tr>
</tbody>
</table>

¹Reference 15.
²Reference 12.
Kaukonen et al.24 A direct consequence of this observation is that during the annealing of Si samples that contain SnV pairs, the population of the resultant VV and SnV\textsubscript{2} complexes is comparable. This is in agreement with the experimental self-diffusion activation energy of Sn in Ge to the activation energy of Ge\textsubscript{V} and SnSn pairs. Taking into account the almost equal that during the annealing of Si samples that contain Sn1− atoms and SnSn1− pairs. In Ge and Si the SnVV triplet clusters.

When an additional Sn atom binds to a SnV pair it forms a Sn\textsubscript{2}V complex. In Ge and Si the VSnSn configuration is more stable than the Sn V Sn configuration by \(-0.03\) and \(-0.05\) eV, respectively (see Table I). The binding energy \(E_{\beta}(V−SnSnGe_{N−3})\) between a vacancy and an existing SnV pair is given by

\[
E_{\beta}(V−SnSnGe_{N−3}) = E(VSnSnGe_{N−3}) − E(VGe_{N−1}) − E(SnSnGe_{N−2}) + E(Ge_{N}) = E_{\beta}(VSnSnGe_{N−3}) − E_{\beta}(SnSnGe_{N−2}).
\]

This quantity represents the energy gain when a vacancy is added to a SnV pair. Again, analogous energies can be defined for adding a Sn atom to an existing VSn pair, i.e., \(E_{\beta}(Sn−VSnGe_{N−3})\), and a SnV pair, i.e., \(E_{\beta}(VSn−SnGe_{N−3})\).

It can be concluded that the vacancy is attracted by Sn atoms and SnV pairs. Taking into account the almost equal activation energy of Sn in Ge to the activation energy of Ge self-diffusion (i.e., 3.09 eV, see Ref. 26) and the limited binding between Sn atoms it is natural to assume that Sn\textsubscript{1−}Ge\textsubscript{1−} behaves as a random alloy.

In conclusion, our study of the binding energies of a range of Sn\textsubscript{V\textsubscript{m}} complexes provides insight into the defect chemistry of Ge (and Si). The results indicate that it is energetically favorable for the Sn atoms to form complexes with vacancies. The most stable configurations (for both Ge and Si) are VSnSn and SnVV for Sn\textsubscript{V} and Sn\textsubscript{V\textsubscript{2}}, respectively. The SQS approach allows the effective modeling of Sn\textsubscript{1−}-Ge\textsubscript{1−} alloys using 32 atom supercells and will, in future, facilitate studies of defects in those more complex materials.

This publication was based on work supported in part by King Abdullah University of Science and Technology (KAUST). Computing resources were provided by the HPC facility of ICL.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
Defect complex & \(E_{\beta}\) Ge & \(E_{\beta}\) Si \\
\hline
Sn-VV & −0.62 & −1.18 \\
SnV-V & −0.46 & −1.46 \\
V-SnV & −0.15 & −0.88 \\
V-SnSn & −1.03 & −1.83 \\
V-Sn & −0.36 & −0.56 \\
Sn-Sn & −0.33 & −0.51 \\
\hline
\end{tabular}
\caption{Binding energies (eV) to associate a defect species (Sn or V) either side of an existing pair cluster [as described by Eqs. (4) and (5)] to form SnV\textsubscript{2} or Sn\textsubscript{V\textsubscript{2}} triplet clusters.}
\end{table}

20L. Vegard, \textit{Z. Phys.} \textbf{5}, 17 (1921).