Oxygen diffusion in Sr$_{0.75}$Y$_{0.25}$CoO$_{2.625}$: A molecular dynamics study

Department of Materials Science, Moscow State University, 119991 Moscow, Russia
Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom

Received 25 March 2009; published 12 May 2009

Oxygen diffusion in Sr$_{0.75}$Y$_{0.25}$CoO$_{2.625}$ is investigated using molecular dynamics simulations in conjunction with an established set of Born model potentials. We predict an activation energy of diffusion for 1.56 eV in the temperature range of 1000–1400 K. We observe extensive disordering of the oxygen ions over a subset of lattice sites. Furthermore, oxygen ion diffusion both in the a-b plane and along the c axis requires the same set of rate-limiting ion hops. It is predicted that oxygen transport in Sr$_{0.75}$Y$_{0.25}$CoO$_{2.625}$ is therefore isotropic.

DOI: 10.1103/PhysRevB.79.172102 PACS number(s): 66.30.Lw, 82.47.Ed, 61.43.Bn

New solid-oxide fuel cell (SOFC) electrode materials must show improved performance at lower temperatures and resistance to degradation during operation. In that respect perovskite-related materials such as cobalt-based oxides are important candidate cathode materials for the next-generation SOFC because of their catalytic properties in addition to their high electronic and oxide conductivity. The primary aim of this work is to understand the mechanism of ionic diffusion. It was determined by Istomin et al. using synchrotron x-ray and neutron powder diffractions, that Sr$_{0.75}$Y$_{0.25}$CoO$_{2.625}$ exhibits the tetragonal symmetry (space group $I4/mmm$, No. 139). In this crystal structure the layers of CoO$_6$ octahedra alternate with oxygen-deficient layers that consist of O3, O4, and Co1 sites (see Fig. 1). Additionally, the O4 site was determined to have a partial occupancy of $1/7$, with only one of the four adjacent position of O4 being occupied.

A detailed knowledge of crystal structure and stoichiometry is essential in order to understand the mechanism of ionic diffusion. It was determined by Istomin et al. using synchrotron x-ray and neutron powder diffractions, that Sr$_{0.75}$Y$_{0.25}$CoO$_{2.625}$ exhibits the tetragonal symmetry (space group $I4/mmm$, No. 139). In this crystal structure the layers of CoO$_6$ octahedra alternate with oxygen-deficient layers that consist of O3, O4, and Co1 sites (see Fig. 1). Additionally, the O4 site was determined to have a partial occupancy of $1/7$, with only one of the four adjacent position of O4 being occupied.

FIG. 1. (Color online) In the crystal structure of Sr$_{0.75}$Y$_{0.25}$CoO$_{2.625}$ the Co2O$_6$ octahedra layers alternate with oxygen-deficient layers that consist of O3, O4 (occupancy factor of $1/7$), and Co1 atoms.
TABLE I. Buckingham interionic potential parameters [see Eq. (1)].

<table>
<thead>
<tr>
<th>Interaction</th>
<th>A_{ij} (eV)</th>
<th>ρ_{ij} (Å)</th>
<th>C_{ij} (eV Å6)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>O^2-O^2-</td>
<td>9547.96</td>
<td>0.2192</td>
<td>32.0</td>
<td>25</td>
</tr>
<tr>
<td>$\text{Sr}^{2+}\text{O}^2-$</td>
<td>682.17</td>
<td>0.3945</td>
<td>0.0</td>
<td>26</td>
</tr>
<tr>
<td>Y^{3+}O^2-</td>
<td>1766.40</td>
<td>0.33849</td>
<td>19.43</td>
<td>27</td>
</tr>
<tr>
<td>$\text{Co}^{3+}\text{O}^2-$</td>
<td>1226.31</td>
<td>0.3087</td>
<td>0.0</td>
<td>28</td>
</tr>
</tbody>
</table>

iterative velocity scaling, a stable temperature was achieved. The system was equilibrated for 5000 time steps (~5 ps) before carrying out the production runs that were used in the analysis. We used the variable time step option as implemented in the DL_POLY code for efficient sampling of the dynamic behavior.33,34 Typical time steps are on the order of 1 fs, and up to 250 000 time steps were used to investigate the diffusion processes in the temperature range of 500–1500 K. Simulations were run in the constant number of atoms-pressure-temperature (NPT) ensemble to predict the equilibrium lattice parameters and the constant number of atoms-volume-temperature (NVT) ensemble to predict the diffusion properties. The temperature, and where necessary the pressure, was corrected with the use of the Nosé-Hoover thermostat.35,36

In the present MD simulations ionic transport was determined by monitoring the evolution of the mean-square displacement (MSD) of ions as a function of time for a range of defect temperatures. Extensive simulation times were used to consider a sufficient number of diffusion events for effective statistical sampling. The MSD of an ion i at a position $r_i(t)$ at time t with respect to its initial position $r_i(0)$ is defined by

$$\langle r_i^2(t) \rangle = \frac{1}{N} \sum_{i=1}^{N} [r_i(t) - r_i(0)]^2,$$

where N is the total number of ions in the system. All the cations considered (i.e., Sr, Y, and Co) oscillate around their equilibrium positions; above 900 K, however, oxygen ions demonstrate an increasing MSD with time. This in turn indicates that oxygen self-diffusion is significant at high temperatures, whereas the cation self-diffusion is insignificant on the time scales considered.

The oxygen-diffusion coefficient D can be obtained directly from the slopes of MSD for a range of temperatures using37

$$\langle [r_i(t) - r_i(0)]^2 \rangle = 6Dt + B,$$

where $[r_i(t) - r_i(0)]$ is the displacement of an ion from its initial position and B is an atomic displacement parameter that can be attributed to thermal vibrations. Here we predict values for D over the range of temperatures 1000–1400 K and these are presented in the Arrhenius plot of Fig. 2. We find that over this temperature range, oxygen transport in $\text{Sr}_{0.75}\text{Y}_{0.25}\text{CoO}_2.625$ can be described by the Arrhenius relation with an activation energy of 1.56 eV. At lower temperatures we would expect a lower frequency of events that would necessitate simulation times that are beyond our computational resources. The energy required for an oxygen ion to migrate from an O4 site to an adjacent unoccupied O4 site is very small, about 0.1 eV. These events, however, do not lead to a net diffusion of the oxygen atoms.

Figure 2 compares the present predicted values of oxygen-diffusion coefficient with previous experimental results from studies of related cobalt oxides such as $\text{La}_{0.5}\text{Sr}_{0.5}\text{CoO}_3$ (van Doorn et al.7), $\text{Sm}_{0.5}\text{Sr}_{0.5}\text{CoO}_3$ (Fullarton et al.7), and $\text{La}_{0.5}\text{Sr}_{0.5}\text{Fe}_{0.5}\text{CoO}_3$ (Benson et al.8). Interestingly, in spite of their compositional differences, these observed diffusivities are in good agreement with the present predicted diffusivities.

A significant advantage of MD over other techniques is that it can reveal the transport mechanisms of atoms by the direct observation of ion trajectories and hence reveal any significant anisotropy. The calculated oxygen MSD in the a (or b as they are symmetrically equivalent) and c directions are surprisingly almost equal and therefore the transport of oxygen is predicted to be isotropic. Figures 3(a) and 3(b) represent an example of the oxygen-diffusion pathways on two (001) plane slices ($z=0$ and $z=0.25$) in $\text{Sr}_{0.75}\text{Y}_{0.25}\text{CoO}_2.625$ at 1300 K.

At temperatures above 700 K, the oxygen ion at the O4 sites hops around the four equivalent sites [see Fig. 3(a)], in excellent agreement with previous experimental (neutron) studies14,15 as a result of the low activation energy for this process. At higher temperatures the thermal ellipsoid describing the O2 site becomes increasingly distorted along the (111) direction toward the neighboring partially occupied O4 sites [see Fig. 3(c)]. Additionally, at temperatures over 1000 K there is significant intermingling of the oxygen ions from O2 and O4 sites [see Fig. 3(c)]. Hopping analysis reveals the possibility of a distinct O5 site (0.35, 0.35, 0.07) at high temperatures near O2 and this will be investigated further.

The disorder between the O2 and O4 sites does not pro-
In the present study we have examined the migration of oxygen vacancies at elevated temperatures. The imposition of NVT conditions on the calculations is a necessary restriction but it does imply that the stoichiometry of the material does not change with temperature. This is an approximation, as in a thermogravimetric study of the related compound Sr$_{0.75}$Y$_{0.25}$CoO$_{2.625}$ it was observed that there is significant oxygen loss at around 673 K. The introduction of oxygen vacancies is expected to lead to an increase in the diffusivity from the already significant levels calculated in this study, provided no extra defect interactions are introduced by the extra vacancies and the change in oxidation state of the Co cations.

In summary, molecular dynamics simulations predict that oxygen transport in Sr$_{0.75}$Y$_{0.25}$CoO$_{2.625}$ is isotropic with an activation energy of 1.56 eV in the temperature range of 1000–1400 K. The diffusion mechanism consists of O2 atoms moving to the partially occupied O4 sites creating vacancies at O2 sites. These vacancies move to the Co-O1/O2 octahedra (a-b-plane migration) and along the O2-O1-O2 pathway (c-axis migration). The effect of oxygen stoichiometry on the diffusion mechanism is currently under investigation.

The authors thank Andrey Berenov for useful discussions. The work was supported by UKERC from NERC TSEC program under Grant No. NE/C513169/1. Computing resources were provided by the HPC facility of Imperial College London.

*alexander.chroneos@imperial.ac.uk

34 W. Smith and I. Todorov, The DLPOLY 3.0 User Manual, Daresbury Laboratory, UK.