Assimilating the Martian water cycle

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© 2012 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Assimilating the martian water cycle

L. Steele¹, S. R. Lewis¹, M. R. Patel¹ and M. D. Smith²

¹Department of Physical Sciences, The Open University, MK7 6AA, UK (l.steele@open.ac.uk)
²NASA Goddard Space Flight Center, Greenbelt, MD, USA

1. Introduction

• Water ice clouds play a role in the martian water cycle, and through their absorption and emission of infrared radiation, they can produce local heating and cooling effects, which can in turn impact the dynamics of the atmosphere [1,2].

• In order to account correctly for the radiative influences of clouds, and to investigate their effects on both the water cycle and atmospheric dynamics, it is important that we can accurately model their location and properties in the martian atmosphere.

• In this poster we discuss the use of data assimilation in order to better understand the martian water cycle. We are presently assimilating data from the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, and will soon move on to assimilate ice, dust and temperature data from Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter.

2. The assimilation scheme

• We use a Global Climate Model (GCM) which uses the most recent version of the LMD GCM physical schemes [3] with the UK spectral dynamical core [4]. For these results, the model resolution corresponds to a 5°×5° grid, with 25 vertical levels ranging from the surface to ~100 km.

• The assimilation scheme used is based on the Analysis Correction scheme [5], modified for Mars [6]. Assimilated fields are updated every model time step, and increments are applied to model grid points that lie within a set radius from the observations (see Fig 1). The increments added to the model are weighted by the distance between the observation and model grid point, as well as the difference between the observation time and the current model time. Observations all have local times -0.5 to 1 hour after each observation affects the model 3 hours before and 1 hour after its valid time.

3. Assimilation results

• Combining assimilation with the ice and vapour transport of the model allows data to be transferred to regions where there are few or no observations. Thus, improvements can be made to the model even in locations between orbit tracks or over the winter poles.

• The assimilation of TES water vapour data enables us to identify regions or times when the model predicted vapour distribution differs from observations, allowing improvements to be made to the model. It allows studies of the vertical profiles of ice and vapour to be made, as well as local and global dynamical processes, which are not available through studying observations alone.

• The results show regions of upper-atmosphere warming and cooling that are not accounted for in the control run. These regions correspond to locations where the model predicts clouds, suggesting they may result from the absorption and emission of infrared radiation by the clouds. We therefore need to include cloud radiative effects in simulations.

4. Discussion and future work

• The temperature assimilation provides evidence of the radiative effects of clouds on the atmospheric temperature.

• The TES vapour assimilation has led to global improvements in the model’s vapour fields, and highlighted areas where improvements can be made to the model in order to improve water cycle modelling. Additionally, we will soon be implementing a new LMD cloud microphysics routine, which should further improve model performance.

• Assimilation of MCS temperature, dust and ice data will soon be undertaken. This will enable us to better understand the processes involved in cloud formation and evolution, and will allow further improvements to the model to be made. Detailed investigations will be carried out to identify the effects of clouds on atmospheric dynamics.

This work is funded by the STFC. The authors gratefully acknowledge the support of colleagues at the Laboratoire de Météorologie Dynamique.

[4] Patera. These may again be due to problems with the model resolution, or due to surface height differences.

Fig 4. Plots for two different seasons of MY 24 showing; (upper panels) assimilated model total vapour column V; (middle panels) the mean 30-sol difference between the TES observations and the control run; (lower panels) the vertical profiles of ice and vapour to be made, as well as local and global dynamical processes, which are not available through studying observations alone.

• The error in southern hemisphere summer is also mainly due to a lack of sublimation at the south pole. As there is no ice cap specified here in the model, the sublimation is of ice that was deposited in the winter, after being transported as vapour from the tropics. Thus, improvements to the north polar cap should lead to increased vapour transport south, and hence a reduction in the model error in southern hemisphere summer. Again, the assimilation has improved the vapour field, but differences still exist, especially east and west of Hellas and around Arabia Patera. These may again be due to problems modelling vapour transport, or due to surface height differences.

Fig 5. Global RMS vapour column difference (upper panels) and global mean vapour column difference (lower panels) for a control run and a vapour assimilation run.

Fig 6. Plots for two different seasons of MY 24 showing; (upper panels) assimilated model total vapour column V; (middle panels) the mean 30-sol difference between the TES observations and the control run; (lower panels) the vertical profiles of ice and vapour to be made, as well as local and global dynamical processes, which are not available through studying observations alone.

• The error in southern hemisphere summer is also mainly due to a lack of sublimation at the south pole. As there is no ice cap specified here in the model, the sublimation is of ice that was deposited in the winter, after being transported as vapour from the tropics. Thus, improvements to the north polar cap should lead to increased vapour transport south, and hence a reduction in the model error in southern hemisphere summer. Again, the assimilation has improved the vapour field, but differences still exist, especially east and west of Hellas and around Arabia Patera. These may again be due to problems modelling vapour transport, or due to surface height differences.

Fig 5. Global RMS vapour column difference (upper panels) and global mean vapour column difference (lower panels) for a control run and a vapour assimilation run.

Fig 6. Plots for two different seasons of MY 24 showing; (upper panels) assimilated model total vapour column V; (middle panels) the mean 30-sol difference between the TES observations and the control run; (lower panels) the vertical profiles of ice and vapour to be made, as well as local and global dynamical processes, which are not available through studying observations alone.

• The error in southern hemisphere summer is also mainly due to a lack of sublimation at the south pole. As there is no ice cap specified here in the model, the sublimation is of ice that was deposited in the winter, after being transported as vapour from the tropics. Thus, improvements to the north polar cap should lead to increased vapour transport south, and hence a reduction in the model error in southern hemisphere summer. Again, the assimilation has improved the vapour field, but differences still exist, especially east and west of Hellas and around Arabia Patera. These may again be due to problems modelling vapour transport, or due to surface height differences.

Fig 5. Global RMS vapour column difference (upper panels) and global mean vapour column difference (lower panels) for a control run and a vapour assimilation run.

Fig 6. Plots for two different seasons of MY 24 showing; (upper panels) assimilated model total vapour column V; (middle panels) the mean 30-sol difference between the TES observations and the control run; (lower panels) the vertical profiles of ice and vapour to be made, as well as local and global dynamical processes, which are not available through studying observations alone.

• The error in southern hemisphere summer is also mainly due to a lack of sublimation at the south pole. As there is no ice cap specified here in the model, the sublimation is of ice that was deposited in the winter, after being transported as vapour from the tropics. Thus, improvements to the north polar cap should lead to increased vapour transport south, and hence a reduction in the model error in southern hemisphere summer. Again, the assimilation has improved the vapour field, but differences still exist, especially east and west of Hellas and around Arabia Patera. These may again be due to problems modelling vapour transport, or due to surface height differences.

Fig 5. Global RMS vapour column difference (upper panels) and global mean vapour column difference (lower panels) for a control run and a vapour assimilation run.

Fig 6. Plots for two different seasons of MY 24 showing; (upper panels) assimilated model total vapour column V; (middle panels) the mean 30-sol difference between the TES observations and the control run; (lower panels) the vertical profiles of ice and vapour to be made, as well as local and global dynamical processes, which are not available through studying observations alone.

• The error in southern hemisphere summer is also mainly due to a lack of sublimation at the south pole. As there is no ice cap specified here in the model, the sublimation is of ice that was deposited in the winter, after being transported as vapour from the tropics. Thus, improvements to the north polar cap should lead to increased vapour transport south, and hence a reduction in the model error in southern hemisphere summer. Again, the assimilation has improved the vapour field, but differences still exist, especially east and west of Hellas and around Arabia Patera. These may again be due to problems modelling vapour transport, or due to surface height differences.

Fig 5. Global RMS vapour column difference (upper panels) and global mean vapour column difference (lower panels) for a control run and a vapour assimilation run.

Fig 6. Plots for two different seasons of MY 24 showing; (upper panels) assimilated model total vapour column V; (middle panels) the mean 30-sol difference between the TES observations and the control run; (lower panels) the vertical profiles of ice and vapour to be made, as well as local and global dynamical processes, which are not available through studying observations alone.