Holroyd, Fred; Spencer, Claire and Talbot, John
(2005).
Compression and Erdos-Ko-Rado graphs.
*Discrete Mathematics*, 293(1-3) pp. 155–164.

Full text available as:

## Abstract

For a graph G and integer r >= 1 we denote the collection of independent r-setsof G by I^(r)(G). If v is in V(G) then I^(r)_v(G) is the collection of all independent r-sets containing v. A graph G is said to be r-EKR, for r >= 1, iff no intersecting family A of I^(r)(G) is larger than max_ |I^(r)_v(G)|. There are various graphs that are known to have this property; the empty graph of order n >= 2r (this is the celebrated Erdos-Ko-Rado theorem), any disjoint union of atleast r copies of K_t for t >= 2, and any cycle. In this paper we show how these results can be extended to other classes of graphs via a compression proof technique.

In particular we extend a theorem of Berge, showing that any disjoint union of at least r complete graphs, each of order at least two, is r-EKR. We also show that paths are r-EKR for all r >= 1.

## Altmetrics | ## Scopus Citations |

| |

### Actions (login may be required)