The Open UniversitySkip to content

Online sentiment and topic dynamics tracking over the streaming data

He, Yulan; Lin, Chenghua and Cano Basave, Amparo (2012). Online sentiment and topic dynamics tracking over the streaming data. In: 2012 ASE International Conference on Social Computing (SocialCom 2012), 03-05 Sept 2012, Amsterdam, The Netherlands.

Full text available as:
Full text not publicly available
Due to copyright restrictions, this file is not available for public download
Click here to request a copy from the OU Author.
Google Scholar: Look up in Google Scholar


We propose a dynamic joint sentiment-topic model (dJST) which is able to effectively track sentiment and topic dynamics over the streaming data. Both topic and sentiment dynamics are captured by assuming that the current sentiment topic specific word distributions are generated according to the word distributions at previous epochs. We study three different ways of accounting for such dependency information, (1) Sliding window where the current sentiment-topic-word distributions are dependent on the previous sentiment topic specific word distributions in the last S epochs; (2) Skip model where history sentiment topic-word distributions are considered by skipping some epochs in between; and (3) Multiscale model where previous long- and short- timescale distributions are taken into consideration. We derive efficient online inference procedures to sequentially update the model with newly arrived data and show the effectiveness of our proposed model on the Mozilla add-on reviews crawled between 2007 and 2011.

Item Type: Conference Item
Copyright Holders: 2012 IEEE
Academic Unit/Department: Knowledge Media Institute
Interdisciplinary Research Centre: Centre for Research in Computing (CRC)
Related URLs:
Item ID: 34893
Depositing User: Kay Dave
Date Deposited: 30 Oct 2012 11:22
Last Modified: 22 Mar 2016 17:05
Share this page:

▼ Automated document suggestions from open access sources

Actions (login may be required)

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340