The Open UniversitySkip to content

Endothelin-1-stimulated InsP3-induced Ca2+ release is a nexus for hypertrophic signaling in cardiac myocytes

Higazi, Daniel R.; Fearnley, Claire J.; Drawnel, Faye M.; Talasila, Amarnath; Corps, Elaine M.; Ritter, Oliver; McDonald, Fraser; Mikoshiba, Katsuhiko; Bootman, Martin D. and Roderick, H. Llewelyn (2009). Endothelin-1-stimulated InsP3-induced Ca2+ release is a nexus for hypertrophic signaling in cardiac myocytes. Molecular cell, 33(4) pp. 472–482.

Full text available as:
Full text not publicly available
Due to copyright restrictions, this file is not available for public download
Click here to request a copy from the OU Author.
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Ca(2+) elevations are fundamental to cardiac physiology-stimulating contraction and regulating the gene transcription that underlies hypertrophy. How Ca(2+) specifically controls gene transcription on the background of the rhythmic Ca(2+) increases required for contraction is not fully understood. Here we identify a hypertrophy-signaling module in cardiac myocytes that explains how Ca(2+) discretely regulates myocyte hypertrophy and contraction. We show that endothelin-1 (ET-1) stimulates InsP(3)-induced Ca(2+) release (IICR) from perinuclear InsP(3)Rs, causing an elevation in nuclear Ca(2+). Significantly, we show that IICR, but not global Ca(2+) elevations associated with myocyte contraction, couple to the calcineurin (CnA)/NFAT pathway to induce hypertrophy. Moreover, we found that activation of the CnA/NFAT pathway and hypertrophy by isoproterenol and BayK8644, which enhance global Ca(2+) fluxes, was also dependent on IICR and nuclear Ca(2+) elevations. The activation of IICR by these activity-enhancing mediators was explained by their ability to stimulate secretion of autocrine/paracrine ET-1.

Item Type: Journal Article
Copyright Holders: 2009 Cell Press
ISSN: 1097-4164
Academic Unit/Department: Science > Life, Health and Chemical Sciences
Interdisciplinary Research Centre: Biomedical Research Network (BRN)
Item ID: 34863
Depositing User: Martin Bootman
Date Deposited: 20 Nov 2012 10:30
Last Modified: 25 Feb 2016 13:01
Share this page:


Scopus Citations

▼ Automated document suggestions from open access sources

Actions (login may be required)

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340