Embracing different semiotic modes in undergraduate assignments

How to cite:


For guidance on citations see FAQs

© 2012 The Author
Version: Accepted Manuscript

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Embracing different semiotic modes in undergraduate assignments

Maria Leedham
m.e.leedham@open.ac.uk

WDHE 2012
Outline

1. Background

2. Corpus data and methods

3. Findings
   - from corpus linguistic keywords and counts
   - from comparison of pairs of assignments
   - from interview data

4. Implications
Outline

1. Background

2. Corpus data and methods

3. Findings
   - from corpus linguistic keywords and counts
   - from comparison of pairs of assignments
   - from interview data

4. Implications
Background: Framing in academic literacies

Deficit approach

- student writing is ‘remedial’, ‘immature’ and contains ‘problems’ or ‘errors’ - especially L2 English student writing (Chen and Baker, 2010; Paquot, 2010)
  
  Vs.

Academic literacies approach

- writing within the academy is a set of social practices in which genre, context and culture are highly significant
- highlights ‘the variety and specificity of institutional practices, and students’ struggles to make sense of these’ (Lea and Street, 2006: 376).
- All student writers are in a constant struggle to establish the preferred ways of making meaning within their particular context (e.g. Lillis, 2006).
Background: Undergraduate assignments

• high-stakes, occluded and under-researched

• from monolithic to research on disciplinary differences (e.g. Hewings, 1999; Hyland, 2008).

• increasing awareness of range of genres required at UG level. (Leedham, 2009; Nesi & Gardner, 2006).

• rise in new genres – (e.g. e-posters, reflective blogs, website evaluations, press releases).

‘unprecedented amount of innovation in assessment’ (Gibbs, 2006:20).
Outline

1. Background

2. Corpus data and methods

3. Findings
   - from corpus linguistic keywords and counts
   - from comparison of pairs of assignments
   - from interview data

4. Implications
Corpus data

British Academic Written English (BAWE)

- 6.5 million words
- 2,761 assignments
- 1,039 writers
- 30+ disciplines
- Variety of L1s
- All proficient writing

The corpora for this study

- L1 English & L1 Chinese UG texts from BAWE & beyond
- 5 disciplines
- =>
- 104 texts from Chinese students
- 295 texts from British students
- Plus insights from lecturer interviews

ESRC project number
RES-000-23-0800
Methods

1. Corpus linguistic keywords and counts
2. Comparison of pairs of assignments
3. BAWE lecturer interviews
Outline

1. Background

2. Corpus data and methods

3. Findings
   - from corpus linguistic keywords and counts
   - from comparison of pairs of assignments
   - from interview data

4. Implications
## Keywords relating to visuals and lists

<table>
<thead>
<tr>
<th>L1&amp; discipline</th>
<th>Chi-Biol</th>
<th>Chi-Bus</th>
<th>Chi-Econ</th>
<th>Chi-Engin</th>
<th>Chi-Food</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Selected keywords</strong></td>
<td>#</td>
<td>growth</td>
<td>#</td>
<td>#</td>
<td>curve</td>
</tr>
<tr>
<td></td>
<td>table</td>
<td>curve</td>
<td>eq.</td>
<td>referring</td>
<td>curve</td>
</tr>
<tr>
<td></td>
<td>data</td>
<td>refer</td>
<td>according</td>
<td>referring</td>
<td>statistical</td>
</tr>
<tr>
<td></td>
<td>equation</td>
<td>model</td>
<td>figure</td>
<td></td>
<td>deviation</td>
</tr>
<tr>
<td></td>
<td>figure</td>
<td>per</td>
<td>output</td>
<td></td>
<td>numbers</td>
</tr>
<tr>
<td></td>
<td>graph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Keywords relating to visuals and lists

Biology
• All "Phases" are labeled on the graph. The curve of the Exponential Phase was straight, though some point lay outside this best straight line of fit (0041a).

Economics
• Actually the total loss resulting from the lower monopoly output (Q M) is the grey triangle. The part of the grey triangle above P C is the loss of consumer surplus (6008q).

Engineering
• According to the program and refer to the figure 4.1.1, it is easy to find… (6107d).

Food Science
• According to the 3 sets of data calculated above… (6150d).
A year 3 Engineering assignment
Visuals

[Image of Solow growth model and population growth rate change graph]

[Image of Involute Curve and Addendum circle diagrams]

[Image of Photograph 9 – Tree shrew pollinating the male flower]

[Image of Carbon Content % and Classification table]

[Image of Ferrite (α) and Austenite (γ) graph]

[Image of MTs, LET-89, LIN-5, PAR-3, PAR-2]

[Image of Figure 1]

[Image of Figure 7]

[Image of Figure 8]
Lists and ‘listlikes’

- Sales promotion:
  - Monthly promotions, according to customer sales and current interest
  - Discounts for bulk orders
  - Free P&P on orders over £25, encouraging bulk buying
  - Discounts for new businesses using us for the first time, on condition they use us for a minimum of two more orders

- Public relations:
  - User friendly website
  - Easy search tools within website, enabling you to find the exact bulb you want even for the engineering minded
  - Extensive “Help” and “FAQ” pages
  - 12 hour guaranteed reply to email queries

Conclusions

The experiment yielded the following conclusions:

- The efficiency of a single stage centrifugal pump at high pump speed (3000 RPM) is better than it at low pump speed (2000 RPM).
- The input power with high pump speed increases faster than the one with low pump speed as discharge increases.
- The relationship between total head and discharge is not affected by pump speed, but higher pump speed provides higher total head.
## Counts of visual and list items

<table>
<thead>
<tr>
<th></th>
<th>Tables</th>
<th>Figures</th>
<th>Lists</th>
<th>Listlikes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Biol</td>
<td>15****</td>
<td>25****</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Eng-Biol</td>
<td>5</td>
<td>13</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Chi-Econ</td>
<td>1</td>
<td>14****</td>
<td>2*</td>
<td>25****</td>
</tr>
<tr>
<td>Eng-Econ</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Chi-Bus</td>
<td>2</td>
<td>2</td>
<td>6*</td>
<td>129****</td>
</tr>
<tr>
<td>Eng-Bus</td>
<td>6**</td>
<td>6**</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>Chi-Food</td>
<td>20*</td>
<td>6</td>
<td>5</td>
<td>82****</td>
</tr>
<tr>
<td>Eng-Food</td>
<td>14</td>
<td>6</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>Chi-Engin</td>
<td>10*</td>
<td>21</td>
<td>7</td>
<td>53****</td>
</tr>
<tr>
<td>Eng-Engin</td>
<td>7</td>
<td>21</td>
<td>10</td>
<td>24</td>
</tr>
</tbody>
</table>

per 10,000 words

* p<.05
** p<.01
**** p<.0001
Outline

1. Background

2. Corpus data and methods

3. Findings
   - from corpus linguistic keywords and counts
   - from comparison of pairs of assignments
   - from interview data

4. Implications
The role of maternal effect genes in the development of the nematode *Caenorhabditis elegans*

**ABSTRACT**

*Caenorhabditis elegans* (C. elegans) has been used as one of the favourite model organisms for developmental studies. Embryogenesis of *C. elegans* extensively relies on maternal effect genes for intrinsically asymmetric cell division and cell-cell interactions. In this review, the early embryogenesis of *C. elegans* from the establishment of Anterior-Posterior polarity initiated by spermatogenesis to the asymmetrical cell divisions and different cell lineages induced by a variety of cell fate determinant is summarized; some of the molecular mechanisms carried out by the crucial maternally expressed cell fate determinants underlying these processes are described.

**INTRODUCTION**

The *C. elegans* and its life cycle

*Caenorhabditis elegans* (C. elegans) is a small (~1mm long) free-living soil nematode that has a predominantly hermaphroditic adult life. (Figure 1)

![Figure 1](image.png)

**Figure 1**  Adult *C. elegans* [1] Upper diagram: differential interference contrast image of an adult *C. elegans* Lower diagram: anatomical structures of adult *C. elegans* (schematic drawing). Middle Left scale bar: 0.1mm

The life cycle of *C. elegans* contains an embryonic stage, four larval stages (L1-L4) and an adult stage. (Figure 2) Molt (apoptosis, new cuticle formation, and ecdysis) takes place at the end of each larval stage. Under certain external conditions such as starvation, a non-growing stage, dauer larva, may form through a facultative, reversible, arrest at the lethargus in the second of four cuticle moults. The life cycle is about 2 to 3 weeks. Each approximately 5,000 *C. elegans* proteins have already been matched to homologous human gene transcripts (Lai et al., 2000). Specific mutants may be produced by targeted deletion through transposon insertion or mutagens. Embryos may be manipulated by transformation or injection with transgenes and marker proteins such as green fluorescent protein (GFP) are easily visualised in the transparent embryos. RNA interference (RNAi) is a particularly useful technique for studying maternal effect genes by eliminating the expression of specific maternal or zygotic genes in offspring.

**Reproduction**

In hermaphrodite worms, fertilization occurs in the spermatheca – an organ where the sperm is stored – when mature oocytes pass from the ovary towards the vulva (Fig 1A–B). The point of sperm entry determines the posterior end of the embryo. After fertilization, a rigid, oval-shaped chitin eggshell called the chorion is made (Keipers & Stroupe, 1997) and the long axis of this ovoid is termed the anteroposterior (ap) axis of the embryo.
Visuals and extended captions in Biology

- Comparison of two Biology assignments

<table>
<thead>
<tr>
<th>Text feature</th>
<th>Chinese, text 0434a</th>
<th>English, text 0067b</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of pages excluding refs</td>
<td>15.5</td>
<td>9</td>
</tr>
<tr>
<td>No. of tokens (in WS)</td>
<td>3234</td>
<td>3201</td>
</tr>
<tr>
<td>No. of tables</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>No. of figures</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>Visuals as proportion of whole text</td>
<td>48% (7.5 pp)</td>
<td>22% (2pp)</td>
</tr>
<tr>
<td>Layout</td>
<td>whole page</td>
<td>2 columns</td>
</tr>
</tbody>
</table>
Diagrams and extended captions in text by Chinese writer

- 186 words
- different font
- text wrapping
- full sentences
- same neutral stance as main prose (e.g. use of passives, no first person pronouns, formal language)
- freestanding text i.e. separate reading path
Bulleted lists vs. connected prose in Economics

Question 2b: Interpretation of results (equations 4 and 5 appendix 2)

The coefficient on class attendance is 0.13, which implies that holding all other variables constant, if you increase class attendance by 1 unit (1% increase in class attendance in a year), then the exam mark will increase by 0.13 units (0.13% increase) in your mark. The coefficient on lecture attendance is 0.05, meaning holding all other variables constant, attending 1 more lecture will increase your mark by 0.05%. The coefficient on revision lecture attendance is slightly surprising, at -0.04, implying that by attending 1 more revision lectures, your mark will decrease by 0.04%. The intercept can be interpreted to mean that if you attended no classes, revision or standard lectures, you would score 49.8%.

Tests (shown in appendix 2)

The coefficient on class attendance was significant at the 0.01 level implying that in the multiple regression model, class attendance has a significant impact on test mark. The coefficient on lecture attendance however was not significant at the 0.01 level, implying perhaps that lecture attendance does not have a significant impact in a multivariate framework. However, lecture attendance does appear to have a reasonably high correlation with class attendance, so the regression may be suffering from multicollinearity, which has made the result not significant. However, multicollinearity may be occurring such another factor being ‘unhelpful’ for it to have a negative impact on the regression. The coefficient on revision lecture attendance was significant up to the 1% level, this implying that while we can fairly sure that revision lectures have a significantly negative impact, there is scope for the fact that the null hypothesis is indeed correct (type I error) and that the result is not significant.

The F-test for the joint explanatory power of the independent variables yielded an F-statistic of 13.07. This is significant at the 0.01 level as it exceeds the critical value of 3.88. Hence we can reject the null hypothesis given in the appendix. This means that the explanatory variables have made a significant joint contribution to exam performance.

Question 3: To investigate whether there are differences in performance between the sub-sample of 2002 students and previous year’s students I have created intercept dummy variables and added them to the original equation, as shown by equations 1 and 2 in appendix 3. The first equation is known as the restricted equation, as opposed to the unrestricted model in equation 2, because it imposes the F-test null hypothesis (see hypothesis 4 appendix 3) on equation 2. Hence in equation 2, the intercept is allowed to vary whereas it is not allowed to equation 1 and is assumed to be constant in all years.

Interpretation of results per coefficient

The intercept in equation 3 can be interpreted as before, meaning that if you attended no lectures and had no A’s at A level you would score 56.97. This is slightly immeasurable in the sense that you would not have enough courses if you did not score any A’s at A level. The coefficient of 0.14 on lecture attendance means that if you attended 1 more lecture you would get 0.14 out of 100 more in the exam ceteris paribus. The coefficient of 0.04 on A’s at A level means that if you get an extra A at A-level you would get 0.04% more ceteris paribus. The dummy variables in this case have a slightly different interpretation. Basically they say how much the intercept will move up or down compared to the omitted category, the year 2000 students. The dummy variable coefficient on 1999 of -0.19 means that if you are a 1999 student, you will score a proportion of 0.19% less than if you were 2002 student. The coefficient of -0.81 on the 2001 dummy variable means that you will score a proportion of 0.81% less than if you were a 2002 student. These are shown in equations 3 to 6.

As reported in question 4, the correlation coefficient was 0.67.

(a) Binary regression

The following results are obtained after running the bivariate regressions in EViews:

\[ \text{QTMARK} = 64.67028 + 0.002171 \text{TATR} \]

Interpretation for the regression results:

- The intercept 64.67 means that even students who did not attend any revision lecture, they could get 64.97 in the exam, which may not make much economic sense as revision lectures are designed to boost a student’s exam mark.
- Higher coefficient of 0.0021 shows an inverse relationship between the attendance of revision lecture and exam performance. It means that 1% increase in the proportion of revision lecture attendance would decrease mark by 0.0021 in the exam.
- The coefficient of -0.082 shows an inverse relationship between the attendance of revision lecture and exam performance. It means that 1% increase in the proportion of revision lecture attendance would decrease mark by 0.082 in the exam.
- The coefficient of 0.0021 suggests that the variation in QTMARK is explained by TATR. Therefore, we could conclude that TATR has such an impact on exam performance that it could be even observed.

Two-sided t-test for the significance of the slope \( \beta \)

H0: \( \beta = 0 \) (Proportion of revision lecture attended does not affect exam performance)
H1: \( \beta \neq 0 \) (Proportion of revision lecture attended does affect exam performance)

Since the calculated t-value is less than the critical value of t-test at 5% significance level with 370 d.f., we fail to reject H0. Thus the case and the conclusion is that revision lecture attendance does not affect exam performance.

(b) Multivariate regression

Modeling by OLS, we get:

\[ \text{QTMARK} = 56.5257 + 0.165984 \text{TATR} + 0.839660 \text{ABILITY} - 0.417658 \text{HSQST} + u \]

Interpretation of the regression results:

1. Refer to "Correlation matrices for these quantitative variables" in the Appendix.
2. Refer to the Appendix for the t-statistic regression results table.
Bulleted lists vs. connected prose in Economics

<table>
<thead>
<tr>
<th>Text feature</th>
<th>Chinese, 0155a</th>
<th>English, 0202j</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of pages excluding refs</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>No. of tokens (in WS)</td>
<td>3731</td>
<td>4242</td>
</tr>
<tr>
<td>No. of formulae</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>No. of lists</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>No. of listlikes</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Lists and listlikes as % of whole text</td>
<td>90%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Bulleted lists vs. connected prose in Economics

EC 226 Economometrics 1 Assignment 1

L1 Chinese writer


Three qualitative variables would have some impacts on the QTMARK, but whether they are statistically significant will be investigated later.

**Correlation matrix**

- The correlation between QTMARK and variables **ABILITY**, **ALEVELS**, **ATTCL**, **ATTTL** and **EPR** is very high. Therefore, multicollinearity is an issue needed to think about later on.
- **EXPALC** has a strong positive relationship with **ATTCL**, **ATTTL** and **EPR**. This could be explained that students who drink coffee get up easily to attend the lectures and classes. The more **TOPS** they attended, the more money they spent on alcohol.
- Generally, **HSQ** has a strong positive relationship with **ALEVELS** and **ALEVELS**, indicating a negative relationship with **ABILITY** and **TOPS**. This could be explained that the more **TOPS** students went for, the fewer hours they spent on studying and the higher ability a student has the less study is needed for him/her. On the other hand, students having a good A level record maintained their hard working attitude.

**2. Bivariate Regression and Multivariate Regression**

(a) **Bivariate Regression**

<table>
<thead>
<tr>
<th>QTMARK</th>
<th>AT</th>
<th>ATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.57052</td>
<td>+0.002171</td>
<td>ATTR</td>
</tr>
</tbody>
</table>

**Interpretation for the regression results:**

- The increase of +0.0027 means that even students who did attend any revision lecture, they could get 6.97 in the exam, which may not make much economic sense as revision lectures are designed to boost a student’s exam marks.
- Higher coefficient of 0.0022 shows an inverse relationship between the attendance of revision lecture and exam performance. It means that an increase in the proportion of revision lecture attendance would decrease 0.0022 in the exam.
- The coefficient of 0.0027 shows an inverse relationship between the attendance of revision lecture and exam performance. It means that an increase in the proportion of revision lecture attendance would increase 0.0027 in the exam.

(b) **Multivariate Regression**

<table>
<thead>
<tr>
<th>QTMARK</th>
<th>AT</th>
<th>ATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.5257</td>
<td>0.165549</td>
<td>ATT</td>
</tr>
</tbody>
</table>

**Modelling by GLS, we get:**

<table>
<thead>
<tr>
<th>QTMARK</th>
<th>AT</th>
<th>ATT</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.8929</td>
<td>0.04900</td>
<td>ATT</td>
</tr>
</tbody>
</table>

**Interpretation of the regression results:**

**Question 2a**

**Interpretation of results (equations 4 and 5 appendix 2)**

The coefficient on class attendance is 0.13, which implies that holding all other variables constant, if you increase class attendance by 1 unit (1% increase in class attendance in a year), the exam mark will increase by 0.13 units 0.13% increase in your mark. The coefficient on lecture attendance is 0.06, meaning holding all other variables constant, attending 1% more lectures will increase your mark by 0.06%. The coefficient on revision lecture attendance is slightly surprising, at -0.04, implying that attending 1% more revision lectures, your mark will decrease by 0.04%. The intercept can be interpreted to mean that if you attended no classes, revision or standard lectures, you would score 49.83%.

**T-tests (shown in appendix 2)**

The coefficient on class attendance was significant at the 0.01 level implying that in the multiple regression model, class attendance has a significant impact on test mark. The coefficient on lecture attendance was not significant, however, at the 0.05 level, implying perhaps that lecture attendance does not have a significant impact in a multivariate framework. However, lecture attendance does appear to have a negatively high correlation with class attendance, so the regression may be suffering from multicollinearity, which has made the result not significant. However, multicollinearity may be occurring such another factor being “helpful” for it to have a negative impact on the regression. The coefficient on revision lecture attendance was significant at the 0.05 level, thus implying that while we can fairly sure that revision lectures have a significantly negative impact, there is some evidence that the null hypothesis is indeed correct (type I error) and that the result is not significant.

The F-test for the joint explanatory power of the independent variables yielded an F-statistic of 13.07. This is significant at the 0.01 level as it exceeds the critical value of 3.78. Hence we can reject the null hypothesis given in the appendix. This means that the explanatory variables have made a significant joint contribution to exam performance.

**Question 3**

To investigate whether there are differences in performance between the sub-sample of 2002 students and previous year’s students, I have created intercept dummy variables and added them to the original equation, as shown by equations 1 and 2 in appendix 3. The first equation is known as the restricted equation, as opposed to the unrestricted model in equation 2, because it imposes the F-test null hypotheses (see hypotheses 4, appendix 3) on equation 2. Hence in equation 2, the intercept is allowed to vary whereas it is not allowed to equation 1 and is assumed to be constant in all years.

**Interpretation of co-efficient:**

The intercept in equation 3 can be interpreted as before, meaning that if you attended no lectures and had no A’s at A level, you would score 56.97. This is slightly meaningless in the sense that you would not have got onto the course if you did not score some A’s at least. The coefficient of 0.14 on lecture attendance means that if you attended 1% more lectures you would get 0.14 out of 100 more in the exam ceteris paribus. The coefficient of 0.04 on A’s at A level means that if you get an extra A at A-level you would get 0.04% more ceteris paribus. The dummy variables in this case have a slightly different interpretation. Basically they say how much the intercept will move up or down compared to the omitted category, the year 2000 students. The dummy variable coefficient on 1999 of -1.19 means that if you are a 1999 student, you will score a proportion of 1.19% less than if you were 2002 students. The coefficient of -0.85 on the 2001 dummy variable means that you will score a proportion of 0.85% less than if you were a 2002 student. These are shown in equations 3 to 6.

As reported in question 1, the correlation coefficient was 0.67.
Outline

1. Background

2. Corpus data and methods

3. Findings
   - from corpus linguistic keywords and counts
   - from comparison of pairs of assignments
   - from interview data

4. Implications
Interviews with lecturers

Importance of visuals

• Diagrams and formulae are ‘the spine of the essay’ (Economics)
• The ‘challenge’ is ‘to marry the diagrams with the text’ (Economics)
• Including visuals helps students gain better marks as it avoids having to describe and introducing errors (Biology)
• ‘there is no existing document out there which explains how to interpret their data’ (Biology)
• Marks for presentation may include the assessment of diagrams, tables and overall layout (Engineering).

Being concise

• Lecturers value writing which is ‘clear and concise’, and ‘succinct’ and dislike ‘verbosity’ (Engineering)
• Preference for ‘precision, incision, concision’ (Economics)
• ‘there’s never been a penalty for an essay that’s too short’ (Biology)
Embracing different semiotic modes

Summary

• Chinese students make significantly greater use of visuals and lists than British students
• All BAWE assignments have been judged proficient
• ➝ different, yet equally valued, ways of writing

Possible reasons

• Are visuals and lists used as a strategy to meet the challenge of producing extended pieces of writing in unfamiliar genres in L2?

• Perhaps some students are more visually-oriented? – Chinese languages are more visual…

• Use of visuals is highly valued in particular disciplines e.g. Engineering, Economics, Biology. Since Chinese students tend to study hard-applied disciplines more than soft-pure disciplines, maybe the use of visuals and lists crosses over??
Outline

1. Background

2. Corpus data and methods

3. Findings
   - from corpus linguistic keywords and counts
   - from comparison of pairs of assignments
   - from interview data

4. Implications
Embracing different semiotic modes

• Yet…. ‘graphic literacy’ is seldom taught in EAP classes – why?

• Most applied linguists are ‘trained in the humanities, where words are central to disciplinary values and argumentation’
  
  Johns (1998:183)

• There’s often a concentration on ‘linear text’ (Johns, 1988: 183) rather than on the interaction of visuals with text.

• Tutors may ‘find themselves relying on disciplinary norms they are familiar with’ (Gardner and Holmes, 2009: 251)

• ‘for students who face the challenge of writing extended, factual, evidence-based, and disciplinarily specific texts, there is still relatively little on the market’.
  
  Tribble (2009, p. 416) in a review of EAP textbooks
Implications for practice: EAP tutors

• remain open-minded as to what might be acceptable within unfamiliar disciplines and genres;
• include ‘graphic literacy’ in academic writing classes;
• search corpora (e.g. BAWE, MICUSP) for particular discipline features to identify ways in which these vary;
• collect exemplars of the kinds of writing their students are asked to produce;
• move beyond lexicogrammatical considerations such as the acceptability of I or the choice of passive or active voice to considering assignments holistically (e.g. Is it ok to use a table to display results or should these be given in prose? Can the conclusion be presented as a bulleted list? If images are given, can a lengthy caption be included?);
• encourage students to question their discipline tutors;
• work with discipline tutors to undertake the following strategies ….
Implications for practice: discipline tutors

• provide undergraduate students and EAP tutors with explicit guidance as to what is required in assignments, particularly within unfamiliar genres;
• give exemplars and accompanying commentary to illustrate possible assignment responses - providing several examples gives a sense of the range of acceptability permitted;
• attempt a new assignment themselves in order to see where the rubric fall short;
• allow dedicated time within lectures for students to interview them about the assignment;
• avoid frequent misunderstandings of rubric by adding clarification in subsequent years.
Implications for practice: students

- research writing in their discipline (cf. Johns', 1997, plea for students to become researchers of their disciplines' practices);
- ask questions of both EAP and discipline tutors as to what is, or might be, considered proficient writing;
- seek out exemplars of writing of the type they are being asked to produce (e.g. ask tutor to provide previous cohort’s assignments);
- talk about writing with peers – what is expected? What will this assignment look like? (layout, use of tables/graphs/images/lists).
References


• Leedham, M. (2009) ‘From traditional essay to ‘Ready Steady Cook’ presentation: reasons for innovative changes in assignments’ In Active Learning in HE.

