The Open UniversitySkip to content
 

Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells

Lopez-Ramirez, Alejandro; Fischer, Roman; Torres-Badillo, Claudia C.; Davies, Heather A.; Logan, Karen; Pfizenmaier, Klaus; Male, David K.; Sharrack, Basil and Romero, Ignacio A. (2012). Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. Journal of Immunology, 189(6) pp. 3130–3139.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.4049/​jimmunol.1103460
Google Scholar: Look up in Google Scholar

Abstract

During neuroinflammation, cytokines such as TNF-α and IFN-γ secreted by activated leukocytes and/or CNS resident cells have been shown to alter the phenotype and function of brain endothelial cells (BECs) leading to blood-brain barrier breakdown. In this study, we show that the human BEC line hCMEC/D3 expresses the receptors for TNF-α, TNF receptor 1 and TNF receptor 2, and for IFN-γ. BEC activation with TNF-α alone or in combination with IFN-γ induced endothelial leakage of paracellular tracers. At high cytokine concentrations (10 and 100 ng/ml), this effect was associated with caspase-3/7 activation and apoptotic cell death as evidenced by annexin V staining and DNA fragmentation (TUNEL) assays. In addition, inhibition of JNK and protein kinase C activation at these doses partially prevented activation of caspase-3/7, although only JNK inhibition was partially able to prevent the increase in BEC paracellular permeability induced by cytokines. By contrast, lower cytokine concentrations (1 ng/ml) also led to effector caspase activation, increased paracellular flux, and redistribution of zonula occludens-1 and VE-cadherin but failed to induce apoptosis. Under these conditions, specific caspase-3 and caspase-9, but not caspase-8, inhibitors partially blocked cytokine-induced disruption of tight and adherens junctions and BEC paracellular permeability. Our results suggest that the concentration of cytokines in the CNS endothelial microenvironment determines the extent of caspase-mediated barrier permeability changes, which may be generalized as a result of apoptosis or more subtle as a result of alterations in the organization of junctional complex molecules.

Item Type: Journal Article
Copyright Holders: 2012 The American Association of Immunologists, Inc
ISSN: 1550-6606
Academic Unit/Department: Science > Life, Health and Chemical Sciences
Science
Interdisciplinary Research Centre: Biomedical Research Network (BRN)
Innovation, Knowledge & Development research centre (IKD)
Related URLs:
Item ID: 34217
Depositing User: Ignacio A Romero
Date Deposited: 21 Aug 2012 08:08
Last Modified: 26 Mar 2014 06:18
URI: http://oro.open.ac.uk/id/eprint/34217
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk