The Open UniversitySkip to content
 

The habitability and detection of Earth-like planets orbiting cool white dwarfs

Fossati, L.; Bagnulo, S.; Haswell, C. A.; Patel, M. R.; Busuttil, R.; Kowalski, P. M.; Shulyak, D. V. and Sterzik, M. F. (2012). The habitability and detection of Earth-like planets orbiting cool white dwarfs. Astrophysical Journal Letters, 757(1) article L15.

Full text available as:
[img]
Preview
PDF (Accepted Manuscript) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (299Kb)
URL: http://arxiv.org/abs/1207.6210
DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1088/2041-8205/757/1/L15
Google Scholar: Look up in Google Scholar

Abstract

Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000K to 4000K a planet orbiting at 0.01AU would remain in the Continuous Habitable Zone (CHZ) for ~8Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarisation due to a terrestrial planet in the CHZ of a cool white dwarf is 102 (104) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow reveal the presence of a planet atmosphere, providing a first characterisation. Planets in the CHZ of a 0.6 M white dwarf will be distorted by Roche geometry, and a Kepler-11d analogue would overfill its Roche lobe. With current facilities a Super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known cool white dwarf. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

Item Type: Journal Article
Copyright Holders: 2012 The American Astronomical Society
ISSN: 1538-4357
Extra Information: 6 pp.
Keywords: white dwarfs; planets and satellites
Academic Unit/Department: Science > Physical Sciences
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Related URLs:
Item ID: 34103
Depositing User: Astrid Peterkin
Date Deposited: 01 Aug 2012 08:42
Last Modified: 29 Jan 2014 03:18
URI: http://oro.open.ac.uk/id/eprint/34103
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk