The Open UniversitySkip to content

A chronology of early Mars climatic evolution from impact crater degradation

Mangold, N.; Adeli, S.; Conway, S. J.; Ansan, V. and Langlais, B. (2012). A chronology of early Mars climatic evolution from impact crater degradation. Journal of Geophysical Research, 117(E4)

DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


The degradation of impact craters provides a powerful tool to analyze surface processes in the martian past. Previous studies concluded that large impact craters (20-200km in diameter) were strongly degraded by fluvial erosion during early martian history. Our goal is to study the progression of crater degradation through time with a particular emphasis on the craters with alluvial fans, and on the relative chronology of these craters. The geometric properties of 283 craters of >20km in diameter were analyzed in two highlands of Mars, north of Hellas Planitia, and south of Margaritifer Terra, both known to contain craters with alluvial fans. Three classes were defined from morphology: strongly degraded craters with fluvial landforms and without ejecta (type I), gently degraded craters with fluvial landforms and preserved ejecta (type II), and fresh craters with ejecta and no fluvial landforms (type III). Our main result is that the type II craters that present alluvial fans have characteristics closer to fresh craters (type III) than degraded craters (type I). The distinctive degradation characteristics of these classes allowed us to determine a temporal distribution: Type I craters were formed and degraded between ~4Gy and ~3.7Gy and type II craters with alluvial fans were formed between Early Hesperian and Early Amazonian (~3.7 to ~3.3Gy). This chronology is corroborated by crosscutting relationships of individual type II craters, which postdate Late Noachian valley networks. The sharp transition at ~3.7Gy suggests a quick change in climatic conditions that could correspond to the cessation of the dynamo.

Item Type: Journal Item
Copyright Holders: 2012 by the American Geophysical Union
ISSN: 2156-2202
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 34058
Depositing User: Susan Conway
Date Deposited: 24 Jul 2012 15:02
Last Modified: 24 Jun 2019 10:48
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU