The Open UniversitySkip to content
 

Quasistatic to hypervelocity impactor loading of glass: autodyn hydrocode and static testing configurations

McDonnell, J. A. M.; Catling, D. J.; Herbert, M. K. and Clegg, R. A. (2001). Quasistatic to hypervelocity impactor loading of glass: autodyn hydrocode and static testing configurations. International Journal of Impact Engineering, 26(1-10) pp. 487–496.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1016/S0734-743X(01)00103-8
Google Scholar: Look up in Google Scholar

Abstract

Hypervelocity impact on glass leads to damage which involves both high pressure fluid dynamics (forming the "primary" crater) and comparatively low strain rate damage leading to spallation and extended platelet formation (conchoidal fracture). Conchoidal fracture may extend to much larger volumes than the primary crater and subsequently remove most or all of the primary crater. Understanding and modelling thus calls for knowledge of the equation of state, strength limits (both compressive and tensile) and, especially, crack propagation. We examine how a single improved hydrocode with Johnson Holmquist implementation in 2D and 3D can mimic both extremes of the impact process and look at how static test results compare to the hydrocode during the (conchoidal) stress relief by crack propagation at times very much greater than the final primary cratering phase.

Item Type: Journal Article
Academic Unit/Department: Other Departments > Other Departments
Item ID: 3398
Depositing User: Users 6044 not found.
Date Deposited: 06 Jul 2006
Last Modified: 02 Dec 2010 19:49
URI: http://oro.open.ac.uk/id/eprint/3398
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk