The Open UniversitySkip to content
 

The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X

Hennemann, M.; Motte, F.; Schneider, N.; Didelon, P.; Hill, T.; Arzoumanian, D.; Bontemps, S.; Csengeri, T.; André, Ph.; Konyves, V.; Louvet, F.; Marston, A.; Men’shchikov, A.; Minier, V.; Nguyen Luong, Q.; Palmeirim, P.; Peretto, N.; Sauvage, M.; Zavagno, A.; Anderson, L. D.; Bernard, J.-Ph.; Di Francesco, J.; Elia, D.; Li, J. Z.; Martin, P. G.; Molinari, S.; Pezzuto, S.; Russeil, D.; Rygl, K. L. J.; Schisano, E.; Spinoglio, L.; Sousbie, T.; Ward-Thompson, D. and White, G. J. (2012). The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X. Astronomy & Astrophysics, 543, article no. L3.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1462Kb)
DOI (Digital Object Identifier) Link: https://doi.org/10.1051/0004-6361/201219429
Google Scholar: Look up in Google Scholar

Abstract

In order to characterise the cloud structures responsible for the formation of high-mass stars, we present Herschel observations of the DR21 environment. Maps of the column density and dust temperature unveil the structure of the DR21 ridge and several connected filaments. The ridge has column densities higher than 1023 cm-2 over a region of 2.3 pc2. It shows substructured column density profiles and branches into two major filaments in the north. The masses in the filaments range between 130 and 1400 M, whereas the mass in the ridge is 15000 M. The accretion of these filaments onto the DR21 ridge, suggested by a previous molecular line study, could provide a continuous mass inflow to the ridge. In contrast to the striations seen in, e.g., the Taurus region, these filaments are gravitationally unstable and form cores and protostars. These cores formed in the filaments potentially fall into the ridge. Both inflow and collisions of cores could be important to drive the observed high-mass star formation. The evolutionary gradient of star formation running from DR21 in the south to the northern branching is traced by decreasing dust temperature. This evolution and the ridge structure can be explained by two main filamentary components of the ridge that merged first in the south.

Item Type: Journal Article
Copyright Holders: 2012 ESO
ISSN: 1432-0746
Extra Information: 7 pp.
Keywords: DR 21; dust; extinction; star formation
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Item ID: 33934
Depositing User: G. J. White
Date Deposited: 02 Jul 2012 08:14
Last Modified: 30 Nov 2016 14:14
URI: http://oro.open.ac.uk/id/eprint/33934
Share this page:

Altmetrics

Scopus Citations

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

▼ Automated document suggestions from open access sources

Actions (login may be required)

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk