Rosetta - ESA’s comet lander mission

Conference Item

How to cite:

Morse, Andrew; Sheridan, Simon; Andrews, Dan; Barber, Simeon; Morgan, Geraint; Wright, Ian and Pillinger, Colin (2012). Rosetta - ESA’s comet lander mission. In: In-Situ Science and Instrumentation for Primitive Bodies, 30 April-3 May 2012, Keck Institute of Space Studies, Pasadena, CA, USA.

For guidance on citations see FAQs.

© 2012 Not known
Version: Version of Record
Link(s) to article on publisher’s website:
http://www.kiss.caltech.edu/workshops/primitive-bodies2012/presentations/morse.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Rosetta mission

1993 ESA approve Rosetta mission as a cornerstone mission for its long term science programme.
 Target comet 46P Wirtanen.
2002 Jan 2003 launch postponed
2003 Feb 2004 launch planned.
 New target 67P Churyumov-Gerasimenko
2004 March 2nd Launch

Objectives:
Rendezvous with a comet and study the nucleus for more than one year as it passes through perihelion.
Investigate the origin of comets, the relationship between cometary and interstellar material and its implication with regard to the origin of the solar system
67P/Churyumov-Gerasimenko

Discovered September 1969 by Klim Churyumov and Svetana Gerasimenko

Perihelion 1.28 AU
Aphelion 5.74 AU
Orbital Period 6.57 years
Most recent perihelion, 2008 magnitude 12

Chosen as new Rosetta target, March 2003

Estimated size of nucleus 3 x 5 km
Rotation period ~12 hours

Gas production rate 220 kg s⁻¹

History:
Before 1840, Perihelion 4.0 AU
1840 Close encounter with Jupiter, perihelion 3.0 AU
1959 Close encounter with Jupiter, perihelion 1.29 AU
2007 Encounter with Jupiter, perihelion 1.25 AU
Rosetta Power

Rosetta: 2x14m solar panels 64m²
8700 W at 1 AU 920 W at 3 AU
Hibernation until 10:00 GMT 20 Jan 2014

Philae: Solar panels 10 W
Primary batteries 1000 Wh
Secondary batteries 100 Wh
Philae Lander
Separation Descent & Landing

Distance 2.7 AU
Height 2 km
Duration 30 min

• Try and get measurement if Lander is passing over an interesting area

• Mean free path at 10^{-7} mBar ~100m
 • Ion molecule reactions

Comet activity at 3.5AU (ICES model) $6 \times 10^{24} - 6 \times 10^{26} - 6 \times 10^{28}$ s$^{-1}$

Composition 90% H$_2$O, 9% CO$_2$, 1% organics

Partial pressure H$_2$O 1 km from surface ~ $10^{-9} - 10^{-7} - 10^{-5}$ mbar
Rosetta Lander on the comet

Weight on comet ~10 g
Attached by harpoon & ice screws
Lander Payload....

• 11 Instruments

• Rosetta Bible
CIVA Comet Infrared and Visible Analyser

Panoramic Cameras

• Total 7 cameras
• 5 single, 1 stereoscopic pair
• FOV 60°
• Resolution ~1mm @1m
 ~2m at horizon
• Topography
• Albedo
• Surface features, vents, jets
• Surface changes

Bibring et al. 2007
CIVA-P Panoramic camera
Rosetta solar panels

panel thickness: 22 mm (honeycomb structure)
seen in 10 px, from ~ 2.2 m
CIVA sampling: 1 mrad, as designed

CIVA at Mars
ROLIS ROsetta Lander Imaging System

Downward looking camera

Operation during SDL

Resolution 0.3mm/pixel @30cm

Can image drill bore hole and APXS site

Multispectral imaging
LEDs 470, 530, 640 and 870 nm

Mottola et al. 2007
APXS Alpha Particle X-ray Spectrometer

- Predecessor of MER APXS
- Curium 244 alpha source
- Elemental composition \(z \geq 23 \)
- Alpha spectrum carbon and oxygen

Klingelhöfer et al. 2007
CONSERT
Comet Nucleus Sounding Experiment by Radio-wave Transmission

- Internal structure of comet
- Change in velocity and amplitude of radio signal during comet orbit

Kofman et al. 2007
ROMAP
ROsetta MAgnetoemeter and Plasma monitor

- Magnetic properties of comet
- Interaction with solar wind
- Pirani sensor 10^{-3} – 10 mbar
- Penning sensor 10^{-8} – 10^{-3} mbar
- Magnetometer
 - Range ±2000 nT
 - Resolution 10 pT
- Plasma monitor

Auster et al. 2007
SESAME
Surface Electric Sounding and Acoustic Monitoring Experiment

- **CASSE** Comet Acoustic Surface Sounding Experiment
 - Frequency from ~3 Hz to 3.3 kHz
 - Vertical structure

- **PP** Permittivity Probe
 - Water ice content

- **DIM** Dust Impact Monitor
 - Mechanical properties
 - Properties on impacting dust grains

Seidensticker et al. 2007
MUPUS MUlti PUrpose Sensor package

- Physical Properties of surface layers, depth ~30cm
 - Density
 - Porosity
 - Cohesion
 - Thermal diffusivity
 - Thermal conductivity
 - Temperature
- Anchor
 - Temperature
 - Accelerometer
- MUPUS Penetrator
- Thermal Mapper

Spohn et al. 2007
SD2 Sampler, drill & distribution system

Drill to ~ 30 cm depth
Collect sample
Deliver to oven on carousel

Finzi et al. 2007
SD2 - Sample drilling and distribution system

Collects surface and comet subsurface samples

Drilling depth up to 30cm

Sample size 20mm3 ~ 3mg

Sample placed in one of 26 ovens on a carousel

16 Medium Temperature Ovens (max 180°C) for CIVA microscope, COSAC and Ptolemy

10 High Temperature Ovens (max 800°C) for COSAC and Ptolemy
CIVA Comet Infrared and Visible Analyser

Microscope Cameras
Medium Temperature Ovens with window

- CIVA M/V - Visible
- FOV 3mm
- Resolution 7μm
- Illumination 3 LEDs
 525nm, 640nm and 880nm
- + daylight illumination

- CIVA M/I - Infrared
- FOV 3mm
- Resolution 40μm
- Spectral range 1-4μm
 3nm steps

Detection of UCAMMs?

In flight calibration

Bibring et al. 2007
COSAC
COmet Sampling And Composition experiment

- GC-MS
- Pyrolysis >600°C
- Chemical processing
- 8 GC columns
 - 5 chemical composition
 - 3 Chiral
- Thermal conductivity detector
- Time Of Flight MS
 - Mass range 2-350 amu
 - Mass resolution 350

Goesmann et al. 2007
QM Post Vibration Test: E-Box Panels Removed to Reveal PCBs

3 GC Columns
Helium control
Sample Inlet
3 GC Columns
Chemical processing
Hydrogen gas and control
Mass Spectrometer box
Electronics/computer

Ptolemy
Reference gases and CaCO$_3$

Chemical Processing
- CuO
- Mol. Sieve
- Getters
- K$_2$NiF$_6$, KF

Helium Gas supply

Chemical separation
3 GC columns

Hydrogen Gas supply

Mass Spectrometer Analyser

Sample heating

Surface and sub-surface sample from comet delivered by SD2
- 5 Medium temperature ovens (180°C Max)
- 4 High temperature ovens (800°C Max)
- 1 of which contains coma trapping material
Ptolemy Mass Spectrometer - Ion Trap

- Field effect electron source - nanotips
- Ceramic spiral electron multiplier (H Lauche MPaE)
- Drive electronics
- RF electronics
- Compact mass spectrometer
- No permanent magnets
- Operate at 10^{-3} mbar
- Mass range 10 to 150 amu
- Resolving Power better than unit
- Volume 10 x 9 x 9 cm
- Electrode mass 50g
- Overall mass < 500g
- Power ~ 1W

Ion counting electronics

Ceramic spiral electron multiplier (H Lauche MPaE)
Measurement of 13C isotope ratios

Comparison of a sample gas 8.8 per mil heavier than a reference gas

Delta = 8.80
Mean = 7.23
GC Columns

GC1 separates CO, CO₂

GC2 separates CO, N₂ and H₂

GC3 separation of organic volatiles

Direct Channel

Mass Spectrometer
Zero Enrichment analysis of CO$_2$

Sample size 20 nmol
Analysis time 5 minutes per sample

δ^{45}
1 σ error 17‰
average 5.0‰

δ^{46}
1 σ error 25‰
average 4.0‰
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Investigations</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVA</td>
<td>Cameras, microscope</td>
<td>3.4</td>
</tr>
<tr>
<td>ROLIS</td>
<td>Descent camera</td>
<td>1.4</td>
</tr>
<tr>
<td>APXS</td>
<td>Elemental Composition</td>
<td>1.3</td>
</tr>
<tr>
<td>CONSENT</td>
<td>Internal Structure</td>
<td>1.8</td>
</tr>
<tr>
<td>ROMAP</td>
<td>Magnetic and Plasma</td>
<td>0.7</td>
</tr>
<tr>
<td>SESAME</td>
<td>Structure, dust impact</td>
<td>1.8</td>
</tr>
<tr>
<td>MUPUS</td>
<td>Physical properties</td>
<td>2.2</td>
</tr>
<tr>
<td>SD2</td>
<td>Sample acquisition, structure</td>
<td>4.7</td>
</tr>
<tr>
<td>COSAC</td>
<td>Molecular composition</td>
<td>4.9</td>
</tr>
<tr>
<td>Ptolemy</td>
<td>Isotopic composition</td>
<td>4.5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>26.7</td>
</tr>
</tbody>
</table>

Science before SDL

Yes
Additional Slides
Mass Spectrometer

Filament - electron source

Advantages:
- Compact design
- No magnets
- Operate at 10\(^{-3}\) mbar

\[
V_{ej} = \frac{m r_0^2 \Omega^2}{4e}
\]

Scan function:

\[
R_0 = 8 \text{mm}
\]

Frequency \(~0.55\text{MHz}\)

1.8 V/amu
Mass Spectrometer – Open University
Ptolemy Lutetia Operations

Insolation, Solar distance 2.73 AU

Distance from Lutetia centre (km)

Sub-solar point: 15000 km
Close Approach (CA): 3162 km
COSAC
Ptolemy
H10F-DFMS
COPS
ROSINA
RPC-MAG & ROMAP
In situ instruments

Alice
MIRO
Remote sensing instruments

CA-2h50 153,000 km
CA-1h 54,000 km
CA-15 mins 15,500 km
CA+1hr 54,000 km
CA+2hr 108,000 km
The graph shows the intensity (ion counts) of different molecular weight (m/z) categories as a function of distance from the closest approach. The categories are:

- Water m/z 11 to 20
- Other m/z 20 to 90
- Other m/z 20 to 140

The x-axis represents the distance from the closest approach (in km), while the y-axis represents the intensity (ion counts). The error bars indicate the variability in the data.