A submillimetre wavelength spectral line search of the Orion molecular cloud core

How to cite:

For guidance on citations see FAQs.

© 1986 European Southern Observatory

Version: Version of Record

Link(s) to article on publisher’s website:
http://adsabs.harvard.edu/abs/1986A%26A...162..253W

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
A submillimetre wavelength spectral line search of the Orion molecular cloud core

Glenn J. White1, T.S. Monteiro2, K.J. Richardson2, M.J. Griffin1, and R. Rainey1

1 Astrophysics Group, Department of Physics, Queen Mary College, University of London, Mile End Road, London E1 4NS, England
2 School of Physics, The University, Newcastle-upon-Tyne NE1 7RU, England

Received October 23, 1985; accepted January 14, 1986

Summary. A submillimetre wavelength molecular line search of the Orion molecular cloud has been made covering a total of about 5 percent of the frequency range 342.8–358.6 GHz. This search, coupled with our previous observations of submillimetre transitions in this cloud, has led to the detection of 22 transitions of 14 molecular species, of which 16 are reported here for the first time. No unidentified lines have been detected in the present search. Mapping observations have been obtained for several of the lines and, in the case of CO, we have been able to compare the present data with that obtained from other telescopes, to estimate the density and abundance in the emitting region.

Key words: interstellar medium – molecules.

1. Introduction

The spectrum of the Orion molecular cloud shows very complex structure at millimetre wavelengths, containing the rotational emission lines from almost 70 molecular species, as well as strong continuum emission. High spectral resolution (Δν ~ 1 MHz) surveys of the molecular line emission at these wavelengths have recently been made in the frequency ranges 35–50 GHz (Ohishi, 1984), 72–91 GHz (Johansson et al., 1984), 83–109 GHz (Ohishi, 1984), 215–247 GHz (Sutton et al., 1985), and 260–285 GHz (Erickson et al., 1980). Some limited observations at submillimetre wavelengths have been reported for specific lines by Keene et al. (1983), Padman et al. (1982), Phillips et al. (1980), Phillips and Huggins (1982), Wooten et al. (1983), Beichman et al. (1983), Koepfl et al. (1982), White et al. (1981, 1982, 1986), Loren and Wooten (1985) and references therein. However, most of the submillimetre spectral region remains as yet unobserved.

Sensitive measurements at submillimetre wavelengths have been hampered by the relatively insensitive detectors, and lack of telescopes which are situated at an altitude above the absorptive water vapour in the atmosphere. In this paper we report the detection of many of the molecular lines which are expected to be moderately intense in the frequency range 342–359 GHz, plus some additional observations at 461 and 462 GHz. This search is an extension of the earlier study of White et al. (1986), which dealt only with specific observations of HCN, HCO+, and CS.

2. The observations

The submillimetre search of the Orion molecular cloud core was carried out with the 3.8 metre United Kingdom Infrared Telescope (UKIRT) on Mauna Kea, Hawaii. The observations were made during October 20–28 1984, using the QMC Submillimetre Wave Spectral Line receiver, mounted at the f/9 Cassegrain focus of UKIRT. This receiver has three separate cryogenically cooled front ends, optimised for the frequency ranges 220–260, 330–370, and 450–500 GHz. The front end mixers contain indium antimonide hot-electron detectors mounted in waveguide cavities, which are sensitive to vertically polarised radiation. The system noise temperatures were typically 300–400 K at 345 GHz, and 1000 K at 462 GHz. An on-axis television-guiding system was used to acquire the source, the alignment of optical and submillimetre axes having been determined from continuum observations of Jupiter, Saturn and Venus. The pointing was measured to be good to 5″. Observations of the moon and planets, coupled with sky-tips, were made to estimate the coupling of the telescope beam onto sources of known diameter. We estimate that ηcorr, the forward scattering and spillover efficiency (Kutner and Ulrich, 1981) was 0.88 at 345 GHz, and ≤0.6 at 462 GHz. The half-power beamwidth was measured to be 55″ at 345 GHz and 43″ at 462 GHz. All of the spectra were observed towards the position RA (1950) = 05h32m47.0s DEC (1950) = −05°24′23″. Subtraction of the instrumental baseline was achieved by position switching every few minutes to a reference region at RA (1950) = 05h32m27.0s DEC (1950) = −03°24′17″, determined to be free of significant molecular line emission. The zenith atmospheric transmission at 342–358 GHz was typically 0.7–0.8, and at 462 GHz was 0.3. The atmosphere was unusually wet for these observations, and the transmission was consequently poor, relative to that which we have normally encountered at these frequencies from Mauna Kea.

In order to compare the present data with that obtained from other telescopes for different transitions of the same molecular species, it is necessary to make several corrections to the observed antenna temperatures. To correct for coupling of the beam to an extended source, we have divided the chopper calibrated corrected antenna temperatures, T_e, by ηcorr. This provides a scale of corrected radiation temperature, T_e (Kutner and Ulrich, 1981).

Send offprint requests to: G.J. White
This quantity does not, however, take account of the finite brightness distribution of a source. It is therefore necessary to divide T^*_s by another factor, η_s, which corrects for coupling of the angular size of the source into the telescope beam, giving an estimate of the brightness temperature for a particular line (Kutner and Ulich, 1981). In Fig. 1, the variation of η_s with source diameter is shown for the QMC receiver at 345 GHz. This calibration curve was derived initially from theoretical calculations (Lesurf, 1981) which model the receiver beam and UKIRT telescope configuration, and subsequently confirmed against observations of planets. Since the line emission from Orion originates from different sized regions in the cloud core dependent on which molecular species is observed, we are unable to calibrate the lines to a scale of brightness temperature, in a self-consistent way. Consequently, all results in this paper are expressed as T^*_s, unless otherwise stated.

The results of this search are summarised in Table 1. This lists the assumed line frequencies, in most cases taken from the compilations of Poynter and Picket (1980), Lees et al. (1973), and Ziurys et al. (1982). We list the identification; transition

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>Species</th>
<th>Transition</th>
<th>T^*_s (K)</th>
<th>v (km s$^{-1}$)</th>
<th>Δv (km s$^{-1}$)</th>
<th>E (cm$^{-1}$)</th>
<th>Search range (km s$^{-1}$)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>342.883*</td>
<td>CS</td>
<td>7 – 6</td>
<td>7.8</td>
<td>10.1</td>
<td>7.0</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>343.3255</td>
<td>H$_2^{13}$CO</td>
<td>5${1,5}$ – 4${1,4}$</td>
<td>1.3</td>
<td>9.0</td>
<td>5.2</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>344.2003</td>
<td>HC15N</td>
<td>4 – 3</td>
<td>1.5?</td>
<td>7.0?</td>
<td>7.0?</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>344.3106</td>
<td>SO</td>
<td>8${8}$ – 7${7}$</td>
<td>13.5</td>
<td>9.0</td>
<td>22.0</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>344.905</td>
<td>SiO</td>
<td>8 – 7</td>
<td><1.5</td>
<td>–</td>
<td>–</td>
<td>41</td>
<td>–</td>
<td>–45 +60</td>
</tr>
<tr>
<td>345.3398*</td>
<td>H13CN</td>
<td>4 – 3</td>
<td>6.8</td>
<td>11.5</td>
<td>22.0</td>
<td>17</td>
<td></td>
<td>Blended</td>
</tr>
<tr>
<td>345.7046</td>
<td>SO</td>
<td>2${3}$ – 2${2}$</td>
<td><2.0</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>–70 +70</td>
</tr>
<tr>
<td>345.7960*</td>
<td>CO</td>
<td>3 – 2</td>
<td>84.0</td>
<td>9.0</td>
<td>14.0</td>
<td>12</td>
<td></td>
<td>Non-detection</td>
</tr>
<tr>
<td>346.5285</td>
<td>SO</td>
<td>9${9}$ – 8${8}$</td>
<td>10.5</td>
<td>9.5</td>
<td>28.0</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>346.9841</td>
<td>H$_2$C13O</td>
<td>5${2,2}$ – 4${2,1}$</td>
<td><1.0</td>
<td>–</td>
<td>–</td>
<td>155</td>
<td>–</td>
<td>–10 +50</td>
</tr>
<tr>
<td>346.9976*</td>
<td>H13CO$^+$</td>
<td>4 – 3</td>
<td>1.5</td>
<td>8.6</td>
<td>3.4</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>347.3316</td>
<td>SiO</td>
<td>8 – 7</td>
<td><1.0</td>
<td>–</td>
<td>–</td>
<td>61</td>
<td>–</td>
<td>–1 +17</td>
</tr>
<tr>
<td>348.5319</td>
<td>H$_2$CS</td>
<td>10${1,9}$ – 9${1,8}$</td>
<td><1.0</td>
<td>–</td>
<td>–</td>
<td>61</td>
<td>–</td>
<td>Non-detection</td>
</tr>
<tr>
<td>349.3381</td>
<td>CCH</td>
<td>4 – 3</td>
<td>7/2 – 5/2</td>
<td>4.5</td>
<td>8.7</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>349.4006</td>
<td>CCH</td>
<td>4 – 3</td>
<td>7/2 – 7/2</td>
<td>7.3</td>
<td>9.4</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>349.4266</td>
<td>CH$_2$CN</td>
<td>19 – 18</td>
<td>$k = 2$</td>
<td>~1.5</td>
<td>?</td>
<td>?</td>
<td>117</td>
<td>Blended</td>
</tr>
<tr>
<td>349.4467</td>
<td>CH$_2$CN</td>
<td>19 – 18</td>
<td>$k = 1$</td>
<td><1.0</td>
<td>?</td>
<td>?</td>
<td>117</td>
<td>Blended</td>
</tr>
<tr>
<td>349.4534</td>
<td>CH$_2$CN</td>
<td>19 – 18</td>
<td>$k = 0$</td>
<td>2.3</td>
<td>8.0</td>
<td>8.5</td>
<td>117</td>
<td>Mostly plateau</td>
</tr>
<tr>
<td>350.6877</td>
<td>CH$_3$OH</td>
<td>4${0}$ – 3${1}$</td>
<td>3.0</td>
<td>9.0</td>
<td>7.0</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350.9501</td>
<td>CH$_3$OH</td>
<td>1${1}$ – 0${0}$</td>
<td>6.4</td>
<td>8.5</td>
<td>12.8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>351.2572</td>
<td>SO$_2$</td>
<td>5${3,3}$ – 4${2,2}$</td>
<td>3.4</td>
<td>10.0</td>
<td>13.0</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>351.7687</td>
<td>H$_2$CO</td>
<td>5${1,5}$ – 4${1,4}$</td>
<td>11.0</td>
<td>9.0</td>
<td>8.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>354.014*</td>
<td>CO$^+$</td>
<td>3 – 2</td>
<td>7/2 – 5/2</td>
<td><0.3</td>
<td>–</td>
<td>–</td>
<td>+2 +15</td>
<td>Low level wing</td>
</tr>
<tr>
<td>354.5055*</td>
<td>HCN</td>
<td>4 – 3</td>
<td>18.1</td>
<td>10.0</td>
<td>30.0</td>
<td>18</td>
<td></td>
<td>Mostly plateau</td>
</tr>
<tr>
<td>356.7332*</td>
<td>HCO$^+$</td>
<td>4 – 3</td>
<td>16.2</td>
<td>8.2</td>
<td>6.4</td>
<td>18</td>
<td></td>
<td>Plateau component present</td>
</tr>
<tr>
<td>357.8925</td>
<td>SO$_2$</td>
<td>7${4,4}$ – 7${3,5}$</td>
<td>1.8</td>
<td>–</td>
<td>–</td>
<td>33</td>
<td>Lines blended together</td>
<td></td>
</tr>
<tr>
<td>357.9259</td>
<td>SO$_2$</td>
<td>6${4,2}$ – 6${3,3}$</td>
<td>6.5</td>
<td>8.7</td>
<td>3.6</td>
<td>19</td>
<td></td>
<td>Blended</td>
</tr>
<tr>
<td>358.6088</td>
<td>CH$_3$OH</td>
<td>4${1}$ – 3${0}$</td>
<td>53</td>
<td>–</td>
<td>–</td>
<td>23</td>
<td>T^*_s</td>
<td></td>
</tr>
<tr>
<td>461.0408</td>
<td>CO</td>
<td>4 – 3</td>
<td>53</td>
<td>–</td>
<td>–</td>
<td>23</td>
<td>T^*_s upper limit</td>
<td></td>
</tr>
<tr>
<td>462.4335</td>
<td>NH$_2$</td>
<td>1${0,1}$ – 1${0,0}$</td>
<td><5</td>
<td>–</td>
<td>–</td>
<td>–6 +25</td>
<td>T^*_s</td>
<td></td>
</tr>
</tbody>
</table>

* Line Parameters from White et al. (1986)
We have detected emission from the $J = 8 - 7$ $v = 0$ line of SiO. The line profiles show broad-winged emission in the $J = 3 - 2$ and $4 - 3$ transitions (Schwartz et al., 1982), with peak intensities corresponding to a flux density of 70 Jy. The present detection of the $v = 0$ line with a peak intensity of 3.8 K, corresponds to a flux density of 1500 Jy in the 55′′ telescope beam (1 K = 395 Jy). The spectral emission extends over a total velocity width of 30 km s$^{-1}$. We have also searched for the $v = 1$ transition, over a velocity range of 105 km s$^{-1}$, but were unable to detect emission greater than 1.5 K (\sim 600 Jy) from the two $v = 1$ maser groups at -7 and $+15$ km s$^{-1}$, which are prominent in the $v = 1$ $J = 1 - 0, 2 - 1$ and $3 - 2$ transitions. From the interferometric mapping in the SiO $J = 2 - 1$ line (Wright et al., 1983), we estimate for a 5×10^4 diameter source, the SiO $J = 8 - 7$ brightness temperature ~ 130 K.

4. The narrow lines

The lines in this category include HCO$^+$, CCH, CH$_3$CN, CH$_3$OH, H$_2$CO and H$_2^{13}$CO$^+$. The H$_2$CO $5_{1,5} - 4_{1,4}$ line at 351.768 GHz, shows evidence for an intense spike component, as well as having plateau emission extending from -5 to $+30$ km s$^{-1}$. Similar profiles have been reported by Wooten et al. (1984) and Leren and Wooten (1985) for several other transitions, these show a much weaker plateau component relative to the spike intensity, and a narrower (by a factor of two) half power linewidth. If we adopt a similar calibration procedure as that of Wooten et al. (1984) to determine the brightness temperature for the spike component (i.e. applying a value of η appropriate to a 0.6 diameter source (see also Bastien et al., 1985), we estimate the peak brightness temperature of the $5_{1,5} - 4_{1,4}$ transition to be 32 K. The corresponding values for the $3_{1,3} - 2_{1,2}$ transition is 10.2 K, and for the $4_{1,4} - 3_{1,3}$ transition is 20 K (Wooten et al., 1984). The brightness temperature of the spike component increases steadily with increase of lower state energy level.

We have mapped the spatial distribution of the $5_{1,5} - 4_{1,4}$ line in a single velocity channel centred at 9.0 km s$^{-1}$, with a channel width of 1 km s$^{-1}$. The map, obtained with 30′′ spacing, is shown in Fig. 3. For comparison the distributions of HCO$^+$ and CCH ($n = 4 - 3, J = 9/2 - 7/2$) mapped in a similar way are shown. The H$_2$CO is unresolved to the N, E and W of the Orion molecular core, but is extended to the south, in a similar way to that of HCO$^+$. There is a suggestion of this southward extension also in the H$_2$CO $4_{1,4} - 3_{1,3}$ distribution of Wooten et al. (1984), and the 13CO map of Schloerb and Loren (1982). The present map does not extend sufficiently far northwards to cover the northern cloud (S3) reported by Bastien et al. (1985).

The H$_2^{13}$CO $3_{1,2} - 2_{1,1}$ transition at 343.325 GHz was detected in this survey with an intensity ratio [H$_2$CO]/[H$_2^{13}$CO] = 8.5. This ratio is similar to that measured for the $3_{1,2} - 2_{1,1}$ transition by Sutton et al. (1985), which has a value of 8.0. Similarly the ratio of antenna temperatures for these two isotopes is found to be 58 and 18, for the $2_{1,1} - 1_{2,1}$ (Bastien et al., 1985) and $2_{1,2} - 1_{1,1}$ (Kahane et al., 1984) transitions respectively. We have carried out an LVG calculation for an assumed kinetic temperature of 80 K, over a range of hydrogen densities and molecular abundance per unit velocity gradient, to compare the ratio of the peak antenna temperatures of H$_2$CO and H$_2^{13}$CO transitions measured with the same telescopes. We have searched
Fig. 2. Spectra of lines detected during this line search. The spectral resolution can be determined from the indicated channel widths of individual spectra. In most cases, the velocity scales are determined using the frequencies listed in Table 1. Exceptions to this are for CH$_3$CN and the SO$_2$ blend near 357.9 GHz, where the velocity scales are referred to 349.442 and 357.908 GHz respectively.
for a solution which agrees with the observed data for the $2_{1,1} - 2_{1,2}$, $2_{1,2} - 1_{1,1}$, $3_{1,2} - 2_{1,1}$, and $5_{1,5} - 4_{1,4}$ transitions, assuming an isotopic abundance ratio C13C = 89. The best fit solution is $n(H_2) = 2.5 \times 10^6$ cm$^{-3}$, and $\chi^2/(\nu-\nu_0) = 4 \times 10^{-10}$ s$^{-1}$ spc. This model solution predicts measured ratios of antenna temperature for H$_2$CO/H$_2$C13CO for the $2_{1,1} - 2_{1,2}$, $2_{1,2} - 1_{1,1}$, $3_{1,2} - 2_{1,1}$ and $5_{1,5} - 4_{1,4}$ transitions of 55, 14, 7.9 and 7.9 respectively. These should be compared with the measured values of 58, 17.7, 8.0 and 8.5. To within the observational uncertainties, the model accurately reproduces the observed ratios over a wide range of frequencies. Under these conditions, the $5_{1,5} - 4_{1,4}$ transition has $\tau \approx 16$, and an excitation temperature of 73 K. This model then predicts a brightness temperature for the $1_{1,0} - 1_{1,1}$ transition of 8.1 K, which is in good agreement with the peak main beam brightness temperature of 9 K measured by Johnston et al. (1983) with the VLA. The derived best fit solution is thus in agreement with the analysis of Johnston et al. (1983), and Bastien et al. (1985), for simple LVG geometries. We point out that for the $5_{1,5} - 4_{1,4}$ transitions, the half-power linewidth is about twice that of lower transitions. It is likely that this arises from a combination of increasing opacity in the higher lines, and from the blending of emission from the plateau and spike components.

The CCH transitions at 349 GHz appear as narrow lines having half-power line-widths of 3.5 km s$^{-1}$. Spectra were obtained for both the $N = 4 - 3$, $(J' - J) = 9/2 - 7/2$ and $7/2 - 5/2$ transitions, using the frequencies derived by Ziurys et al. (1982). These lines are further split into a blend of hyperfine components (Ziurys et al., 1982). The $(9/2 - 7/2)$ blend is predicted to be 25 percent stronger than the $(7/2 - 5/2)$ blend. Our data show that for the Orion molecular cloud core, the measured intensities differ by about 60 percent, with the $9/2 - 7/2$ transition being the stronger. In contrast, at the "radical" position (3N1E), the two transitions are of similar intensity, as shown in Fig. 4. These latter spectra were observed at the same time as those towards the molecular cloud core, and we alternately took spectra at both positions, separated by an off source spectrum, so that the relative intensities of individual lines at the two positions is well determined. These differences probably reflect a difference of excitation at the two emission sites.

From the mapping shown in Fig. 3, the distribution of CCH in the cloud core is slightly less extended than that of HCO$^+$ or H$_2$CO, although there is a suggestion of elongation along a N$-$S direction. The intensity then increases again towards the radical position.

Three methanol lines were observed in the survey, corresponding to the $4_0 - 3_1$, $1_1 - 0_0$, and $4_1 - 3_0$ transitions. There is considerable variation in the half-power line widths of these lines, which show a steady decrease as the lower state energy level increases. The $(4_1 - 3_0)$ line at 358.6 GHz has a pronounced blue wing, extending to about 0 km s$^{-1}$. This is similar to the shape of a number of the methanol spectra from the Nobeyama survey (Ohishi, 1984), where this component is identified with the hot core component at a velocity of 4 km s$^{-1}$. Dr. M. Ohishi has kindly used his statistical equilibrium model (Ohishi, 1984) to examine the possibility that any of these submillimetre wavelength lines are masers. He finds that the $4_1 - 3_0$ transition can show weak maser action, although under the excitation conditions relevant to the Orion cloud core, such maser action would be weak. However, the excitation temperature for this transition can be much higher than that of the other two thermally excited transitions, explaining the higher observed antenna temperature.

We have detected the $J = 19 - 18$, $k = 0$, and 2 transitions of methyl cyanide. The lines are blended together, but the $k = 0$ and 2 lines are clearly identifiable. The $k = 1$ line is considerably weaker than the other two. The lower state energy level for the $k = 0$ line is 117 cm$^{-1}$. Observations of lower rotational transitions have been summarised by Loren and Mundy (1984), who show that the lines contain emission for both the ambient and hot-core components.

5. Non-detections

The non-detections in the search are mostly of lines which either have lower state energy levels that are relatively high, or of transitions in which the line strengths are very small. The non-detections include the HC13N isotope, which based on our previous modelling of the $J = 4 - 3$ HCN line (White et al., 1986), is expected to be just below our detection threshold, and this applies similarly for H$_2$C18O. The SO $2_3 - 2_1$ transition at 345.7046 GHz has a $\Delta k = 2$ jump, and consequently the transition line strength is low, and the line should be extremely weak. No evidence was found for the existence of any lines which could not be identified with known interstellar molecular species, although we note that our search was biased against serendipitous discoveries.
6. Conclusions

This submillimetre wavelength molecular line search, together with the data from our earlier session (White et al., 1986), has led to the detection of 22 transitions of 14 molecular species at submillimetre wavelengths, of which 16 are reported here for the first time. This very limited survey (covering ~ 5 percent of the total frequency range between 342.8 and 358.6 GHz) is an indicator of the rich and diverse range of astrophysical information that will be available to the next generation of submillimetre wave telescopes. The $H_2 CO$ data indicate that in the core, $n(H_2) \geq 2.5 \times 10^6$ cm$^{-3}$ in the spike component. Also for this transition, the plateau becomes more prominent than at lower frequencies.

Acknowledgements. We thank the staff of UKIRT for the excellent support at the telescope; the SERC for support of travel funding, the Millimetre and Submillimetre Astronomy and Receiver development program at QMC, and for support for KJR, TSM, MJG and RR; and to PATT for the award of telescope time; and Dr. M. Ohishi for discussions on the excitation of CH$_3$OH.

References