The Open UniversitySkip to content

Tree-mediated methane emissions from tropical and temperate peatlands

Pangala, S. R.; Gauci, V.; Hornibrook, E. R. C. and Gowing, D. J. (2012). Tree-mediated methane emissions from tropical and temperate peatlands. In: EGU General Assembly 2012, 22-27 Apr 2012, Vienna.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (34kB)
Google Scholar: Look up in Google Scholar


Methane production and transport processes in peatlands are fairly well understood, but growing evidence for emission of methane through trees has highlighted the need to revisit methane transport processes. In wetland trees, morphological adaptations such as development of hypertrophied lenticels, aerenchyma and adventitious roots in response to soil anoxia mediates gas transport, transporting both oxygen from the atmosphere to oxygen-deprived roots and soil-produced methane from the root-zone to the atmosphere. Although, tree-mediated methane emissions from temperate tree species have been confirmed, methane emissions from tropical tree species and processes that control tree-mediated methane emissions remain unclear.

This study explains the role of trees in transporting soil-produced methane to the atmosphere and uncovers the principal mechanisms of tree-mediated methane emissions. Methane emissions from eight tropical tree species and two temperate tree species were studied in situ. The mechanisms and controls on tree-mediated methane emissions were investigated using three year old common alder (Alnus glutinosa; 50 trees) grown under two artificially controlled water-table positions. Methane fluxes from whole mesocosms, the soil surface and tree stems were measured using static closed chambers.

Both temperate and tropical tree species released significant quantities of methane, with tropical trees dominating ecosystem level methane fluxes. In temperate peatlands, both the methane gas transport mechanism and quantity of methane emitted from stems is tree-species dependent. In Alnus glutinosa, no correlations were observed between stomatal behaviour and tree-mediated methane emissions, however, stem methane emissions were positively correlated with both stem lenticel density and dissolved soil methane concentration. In Alnus glutinosa, no emissions were observed from leaf surfaces. The results demonstrate that exclusion of tree-mediated methane emissions from flux measurement campaigns in forested peatlands will lead to an underestimation of ecosystem-wide methane emissions.

Item Type: Conference or Workshop Item
Copyright Holders: 2011 The Authors
Project Funding Details:
Funded Project NameProject IDFunding Body
Not SetNot SetRoyal Society
Extra Information: Geophysical Research Abstracts
Vol. 14, EGU2012-1010, 2012
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: OpenSpace Research Centre (OSRC)
Item ID: 33503
Depositing User: Vincent Gauci
Date Deposited: 23 Apr 2012 08:44
Last Modified: 14 Apr 2019 23:58
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU