The Open UniversitySkip to content

Shock excited far-infrared molecular emission around T Tau

Spinoglio, L.; Giannini, T.; Nisini, B.; van den Ankar, M. E.; Caux, E.; Di Giorgio, A. M.; Lorenzetti, D.; Palla, F.; Pezzuto, S.; Saraceno, P.; Smith, H. A. and White, G. J. (2000). Shock excited far-infrared molecular emission around T Tau. Astronomy & Astrophysics, 353 pp. 1055–1064.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (291kB)
Google Scholar: Look up in Google Scholar


The first complete far-infrared spectrum of T Tau has been obtained with the LWS spectrometer on-board the Infrared Space Observatory (ISO), which detected strong emission from high-J (J=14-25) CO, para- and ortho-H2O and OH transitions over the wavelength range from 40 to 190 mu m. In addition the [OI]63μm, [OI]145μm and [CII]158μm atomic lines were also detected. Most of the observed molecular emission can be explained by a single emission region at T ~ 300-900 K and nH2 ~ 105-6 cm-3, with a diameter of about 2-3 arcsec. This corresponds to a very compact region of 300 - 400 AU at the distance of 140 pc. A higher temperature component seems to be needed to explain the highest excitation CO and H2O lines. We derive a water abundance of 1-7 .10-5 and an OH abundance of ~ 3 .10-5 with respect to molecular hydrogen, implying H2O and OH enhancements by more than a factor of 10 with respect to the expected ambient gas abundance. The observed cooling in the various species amounts to 0.04 L⊙, comparable to the mechanical luminosity of the outflow, indicating that the stellar winds could be responsible of the line excitation through shocks. In order to explain the observed molecular cooling in T Tau in terms of C-type shock models, we hypothesise that the strong far-ultraviolet radiation field photodissociates water in favour of OH. This would explain the large overabundance of OH observed. The estimated relatively high density and compactness of the observed emission suggest that it originates from the shocks taking place at the base of the molecular outflow emission, in the region where the action of the stellar winds from the two stars of the binary system is important.

Item Type: Journal Item
Copyright Holders: 2000 European Southern Observatory
ISSN: 1432-0746
Keywords: infrared; lines and bands; jets and outflows; pre-main sequence stars; stellar formation
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Related URLs:
Item ID: 32658
Depositing User: G. J. White
Date Deposited: 23 Feb 2012 14:54
Last Modified: 11 Dec 2018 03:03
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU