An infrared study of the L1551 star formation region

How to cite:

For guidance on citations see FAQs
An infrared study of the L1551 star formation region

G.J. White1,2,11, R. Liseau1, A.B. Men'shchikov1, K. Justtanont1, B. Nisini6, M. Benedettini3, E. Caux12, C. Ceccarelli4, J.C. Correia5, T. Giannini6,7,10, M. Kaufman5, D. Lorenzetti8, S. Molinari7, P. Saraceno3, H.A. Smith8, L. Spinoglio3, and E. Tommassi9

1 Stockholm Observatory, 133 36 Saltsjöbaden, Sweden
2 University of London, Queen Mary & Westfield College, Department of Physics, Mile End Road, London E1 4NS, England, UK
3 Istituto di Fisica Spazio Interplanetario, CNR Area Ricerca Tor Vergata, Via Fosso del Cavaliere, 00133 Roma, Italy
4 Laboratoire d’Astrophysique de l’Observatoire de Grenoble, 414, Rue de la Piscine, Domaine Universitaire de Grenoble, B.P. 53, 38041 Grenoble Cedex 9, France
5 San Jose State University, Department of Physics, San Jose, CA 95192-0160, USA
6 Osservatorio Astronomico di Roma, Via Frascati 33, 00040 Monte Porzio, Italy
7 California Institute of Technology, IPAC, MS 100-22, Pasadena, California, USA
8 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
9 Italian Space Agency, Via di Villa Patrizi 13, 00161 Roma, Italy
10 Universita La Sapienza, Istituto Astronomico, Via Lancelli 29, 00161 Roma, Italy
11 Mullard Radio Astronomy Observatory, The Cavendish Laboratory, Cambridge CB3 0HE, England, UK
12 CESR, B.P. 4346, 31028 Toulouse Cedex 4, France

Received 29th February 2000 / Accepted 14 August 2000

Abstract. Spectroscopic observations using the Infrared Space Observatory are reported towards the two well known infrared sources and young stellar objects L1551 IRS 5 and L1551 NE, and at a number of locations in the molecular outflow. The ISO spectrum contains several weak gas-phase lines of OI, CII, [Fe II] and [Si II], along with solid state absorption lines of CO, CO2, H2O, CH4 and CH3OH. Hubble Space Telescope (HST) images with the NICMOS infrared camera reveal a diffuse conical shaped nebulosity, due to scattered light from the central object, with a jet emanating from L1551 IRS 5. The continuum spectral energy distribution has been modelled using a 2D radiative transfer model, and fitted for a central source luminosity of \(L_{\odot}\) and a column density, with a visual extinction of to IRS 5 to be \(\approx 10\) and the mid-plane optical depth to L1551 IRS 5 to be \(\approx 120\).

This model provides a good fit to the ISO spectral data, as well as to the spatial structures visible on archival HST/NICMOS data, mid-IR maps and sub-millimetre radio interferometry, and to ground-based photometry obtained with a range of different aperture sizes. On the basis of the above model, the extinction curve shows that emission at wavelengths shorter than \(\approx 2 \mu m\) is due to scattered light from close to L1551 IRS 5, while at wavelengths \(\gtrsim 4 \mu m\), is seen through the full extinguishing column towards the central source. Several [Fe II] lines were detected in the SWS spectrum towards L1551 IRS 5. Although it would seem at first sight that shocks would be the most likely source of excitation for the [Fe II] in a known shocked region such as this, the line intensities do not fit the predictions of simple shock models. An alternative explanation has been examined where the [Fe II] gas is excited in hot \((\sim 4000 \text{ K})\) and dense \((\gtrsim 10^4 \text{ cm}^{-3})\) material located close to the root of the outflow. The SWS observations did not detect any emission from rotationally excited H2. Observations with United Kingdom Infrared Telescope (UKIRT) of the vibrationally excited \(S^{-}\) and \(Q^{-}\)-branch lines were however consistent with the gas having an excitation temperature of \(\sim 2500 \text{ K}\). There was no evidence of lower temperature \((\sim 500 \text{ K})\) H2 gas which might be visible in the rotational lines. Observations with UKIRT of the CO absorption bands close to 2.4 \(\mu m\) are best fit with gas temperatures \(\sim 2500 \text{ K}\), and a column density \(\sim 6 \times 10^{20} \text{ cm}^{-2}\).

There is strong circumstantial evidence for the presence of dense (coronal and higher densities) and hot gas (at least 2500 K up to perhaps 5000 K) close to the protostar. However there is no obvious physical interpretation fitting all the data which can explain this.

Key words: ISM: dust, extinction – ISM: individual objects: L1551 – ISM: jets and outflows – stars: pre-main sequence – infrared: ISM: lines and bands – infrared: stars

1. Introduction

Lynds 1551 is one of the most intensively studied molecular outflow sources. Lying at a distance of \(\sim 150 \text{ pc}\) in the Taurus-Auriga dark cloud, it is associated with a 30 \(L_{\odot}\) Class I protostar, L1551 IRS 5. This is presumed to be in a pre-T Tauri phase and the driving source of a molecular outflow (Snell et al. 1980; Rainey et al. 1987; Fridlund & White 1989a,b; White et al. 1991), and an optical jet (Mundt & Fried 1983; Fridlund & Liseau 1988). L 1551 IRS5 has long been believed to represent
It is special in that it is closest to the Sun and that it displays its outflow at only a slight inclination angle. In addition, IRS 5 is relatively isolated, thus largely reducing source confusion and signal contamination problems, which has made possible observational studies at high resolution and accuracy not obtainable elsewhere. These high resolution studies have revealed that protostars are seemingly far more complex systems than commonly believed. The extinction, A_v, towards IRS 5 has been estimated to be \textgtr150 (Smith et al. 1987; Stocke et al. 1988). Continuum maps reveal that the dense central core is surrounded by an extended cloud (Woody et al. 1989; Keene & Masson 1990; Lay et al. 1994). The spectral energy distribution and intensity maps of L1551 IRS 5 have been modelled in detail using radiative transfer methods in spherical (Butner et al. 1991, 1994) and axially-symmetric (Men'shchikov & Henning 1997, hereafter MH97) geometries. These suggest that a flat accretion disc (Butner et al. 1994) or a geometrically thick torus (MH97) lies inside the extended cloud.

High resolution radio observations have shown evidence for a double source located at IRS 5 (Rodríguez et al. 1986, 1999; Campbell et al. 1988; Bieging & Cohen 1985). Other interpretations of the available data suggest a different morphology, with a binary system lying at the centre of IRS 5 whose components are separated by \textsim50 AU (Looney et al. 1997), which is in turn surrounded by a dusty disc. Hubble Space Telescope (HST) observations by Fridlund & Liseau (1988) suggest that there are two distinct optical jets, supporting this circumbinary interpretation, and that the central region is surrounded by a torus, with a mass \textsim0.1–0.3 M_\odot, and a radius of \textsim700 AU. This in turn is surrounded by an \textsim70 AU central cavity, which contains the double radio source. There appears to be an evacuated cavity in the torus, with a half-opening angle of about 50–55\degree. The axis of the molecular outflow is inclined at about 30–35\degree to the line of sight.

In this paper, we report spectroscopic observations obtained with the ISO Long and Short Wavelength spectrometers (LWS, SWS) towards IRS 5, L1551 NE, HH 29 and at a number of locations along the molecular outflow. Archival data from the HST/NICMOS camera and using an infrared spectrometer at UKIRT are also examined to provide constraints to the modelling. We then present a detailed self-consistent twodimensional continuum radiative transfer model for IRS 5 which is consistent with the available data.

Table 1. ISO observation log. The fluxes of the O I and C II lines are in Wcm\(^{-2}\). All errors and upper limits are 1 \(\sigma\)

<table>
<thead>
<tr>
<th>Name</th>
<th>RA (2000) h m s</th>
<th>Dec (2000) (\circ) (,\prime) (,\prime\prime)</th>
<th>Integration sec</th>
<th>Instrument</th>
<th>O I 63 (\mu)m</th>
<th>O I 145 (\mu)m</th>
<th>C II 157 (\mu)m</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRS 5</td>
<td>4 31 34.3 18 08 05.1 4265</td>
<td>LWS</td>
<td>1.1 \pm 0.1 \times 10^{-18}</td>
<td>\textlesssim 8.5 \times 10^{-21}</td>
<td>1.5 \pm 0.3 \times 10^{-15}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRS 5</td>
<td>4 31 34.3 18 08 05.1 6590</td>
<td>SWS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HH 29</td>
<td>4 31 28.2 18 06 12.7 7133</td>
<td>LWS</td>
<td>1.5 \pm 0.1 \times 10^{-19}</td>
<td>8.6 \pm 3.1 \times 10^{-21}</td>
<td>8.3 \pm 0.6 \times 10^{-20}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow 3</td>
<td>4 30 51.7 17 59 00.1 1937</td>
<td>LWS</td>
<td>5.9 \pm 1.3 \times 10^{-20}</td>
<td>7.0 \pm 4.8 \times 10^{-21}</td>
<td>7.8 \pm 0.3 \times 10^{-20}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1</td>
<td>4 31 26.3 18 07 25.0 1937</td>
<td>LWS</td>
<td>3.8 \pm 1.1 \times 10^{-20}</td>
<td>\textlesssim 4.0 \times 10^{-21}</td>
<td>9.5 \pm 0.8 \times 10^{-20}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b2</td>
<td>4 31 20.5 18 07 42.4 1777</td>
<td>LWS</td>
<td>1.4 \pm 0.6 \times 10^{-19}</td>
<td>6.0 \pm 2.9 \times 10^{-21}</td>
<td>8.8 \pm 1.2 \times 10^{-20}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b3</td>
<td>4 31 16.4 18 06 45.1 1777</td>
<td>LWS</td>
<td>2.4 \pm 0.8 \times 10^{-19}</td>
<td>\textlesssim 5.1 \times 10^{-21}</td>
<td>1.3 \pm 0.1 \times 10^{-19}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b4</td>
<td>4 31 12.5 18 05 35.8 1777</td>
<td>LWS</td>
<td>\textlesssim 1.0 \times 10^{-19}</td>
<td>\textlesssim 5.0 \times 10^{-21}</td>
<td>7.3 \pm 0.8 \times 10^{-20}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r1</td>
<td>4 31 39.8 18 07 27.3 1937</td>
<td>LWS</td>
<td>\textlesssim 1.8 \times 10^{-20}</td>
<td>\textlesssim 3.1 \times 10^{-20}</td>
<td>6.7 \pm 0.9 \times 10^{-20}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r2</td>
<td>4 31 39.0 18 10 28.4 1777</td>
<td>LWS</td>
<td>1.7 \pm 0.6 \times 10^{-20}</td>
<td>\textlesssim 1.2 \times 10^{-20}</td>
<td>7.6 \pm 0.8 \times 10^{-20}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1551 NE</td>
<td>4 31 44.4 18 08 32.4 1777</td>
<td>LWS</td>
<td>4.3 \pm 0.7 \times 10^{-19}</td>
<td>\textlesssim 5.4 \times 10^{-21}</td>
<td>1.4 \pm 0.2 \times 10^{-19}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r4</td>
<td>4 31 42.2 18 11 24.1 1777</td>
<td>LWS</td>
<td>\textlesssim 1.0 \times 10^{-19}</td>
<td>\textlesssim 7.1 \times 10^{-21}</td>
<td>7.7 \pm 1.2 \times 10^{-20}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. Palomar POSS II Digital Sky Survey picture of the L1551 region, with the position and names of the LWS pointing positions indicated, along with the beamsize, which was \(\sim 80''\) (Clegg et al. 1996; Swinyard et al. 1996).

Near-infrared long-slit grating spectroscopy was available from the UKIRT CGS4 archive. The CGS4 camera contained a 256 \(\times\) 256 InSb array, and was operated as a long-slit spectrograph covering the 1–5 \(\mu\)m spectral region. A 75 l/mm grating provided a resolving powers of \(\sim 500\) along an 80'' slit, which was 1''2 wide. Spectra covering the interval 1.86 to 2.52 \(\mu\m\) were reduced using the standard STARLINK package CGS4DR, and calibrated against the standard stars BS 1001 and BS 1665.

3. Infrared continuum

3.1. ISO observations

3.1.1. SWS and LWS continuum

The ISO spectrum of L1551 IRS 5 is shown in Fig. 3. The shape of the continuum in the LWS spectral region can to first order be fitted by a 50 K blackbody. There is however no reason to believe that the entire central region can be described by blackbody emission at this single mean temperature. In fact, the emission at short wavelengths exceeds the expected blackbody values, indicating that higher temperature dust grains must be present, and that the absorption efficiency of dust grains falls off with wavelengths (see e.g., Fig. 9).

There is a discontinuity in the continuum flux level between 40 and 50 \(\mu\m\) – where the SWS and LWS spectra join together (see Fig. 9 for the error bars). This may be due either to a calibration mismatch between the SWS and LWS spectrometers, or a consequence of the different beamwidths.

It is known that the size of L1551 IRS 5 at 50 \(\mu\m\) is less than 6'' FWHM (Butner et al. 1991), and so it should appear point-like to both the SWS and LWS. One should keep in mind, however, the fact that the beam size of the KAO observations was 14'', much smaller than the apertures used in this study. Since larger beams probe different volumes of the circumstellar envelope, the observations cannot be compared directly, unless a detailed radiative transfer model for the object is developed. In fact, our detailed model of L1551 IRS 5 presented later in this section, shows that this continuum level break could be entirely due to the difference in beam sizes for SWS and LWS spectrometers – although of course there is still systematic uncertainty between the calibrations of the LWS and SWS as discussed earlier.

3.1.2. Solid state features

The ISO spectra are shown in Fig. 4 and 5. These include a number of features which are attributable to solid state carriers, as well as several gas phase lines.

The spectral region from 2.8 to 3.8 \(\mu\m\) has a broad absorption feature extending across it, made up from contributions from ices at \(\sim 3.1\ \mu\m\), O–H stretching band of H\(_2\)O at 3.08, 3.4 \(\mu\m\), and solid CH\(_3\)OH at 3.54, 3.84 and 3.94 \(\mu\m\) (Dartois et al. 1999), which sits on the long wavelength side of the H\(_2\)O line.

The column density, \(N\), of an absorbing species producing a feature of peak optical depth \(\tau_{\text{max}}\) and width \(\delta\nu\) is given by

\[
N = \frac{\tau_{\text{max}} \delta\nu}{A}
\]

where \(A\) is the integrated absorption cross section per molecule (also known as the band strength) and \(\delta\nu\) is the full-width at
Fig. 3. L1551 IRS 5 spectrum. The two graphs show the same data, but using either linear or log scales, so as to emphasise the dynamic range of the spectrum, whilst showing weak features. The upper figure is overplotted with the positions of detected lines in the LWS range, and the locations of various features in the SWS range discussed in the text. The lower figure is overplotted with the locations of molecular emission lines which have been detected by ISO towards other sources.

An absorption feature is seen close to 6 μm (see also Fig. 5), which is probably due to a combination of water ice, HCOOH and PAH features. Absorption at these wavelengths has previously been proposed by Tielens et al. (1984) and identified by Keane et al. (1999) towards several sources, and seen towards several of the infrared sources towards the Galactic Centre by Chiar et al. (2000), where it is suggested to indicate the presence of a mixture of H$_2$O, NH$_3$, HCOOH and an aromatic C–C component.

An absorption feature associated with the 7.66 μm CH$_4$ ν$_4$ 'deformation mode' line is clearly visible, with an optical depth $\tau = 0.07$. Using a band strength of $A = 7.3 \times 10^{-18}$ cm molecule$^{-1}$ (Boogert et al. 1996), we estimate the column density of solid methane to be 7.6×10^{16} cm$^{-2}$. Boogert et al. (1996) suggest that the CH$_4$ is embedded with a mixture of polar molecules (such as H$_2$O, CH$_3$OH, CH$_4$ or other species) in the icy grain mantle. However, despite the availability of models of CH$_4$ in various mixtures of polar molecules, the S/N of the present data is insufficient to discriminate between various mixtures.

The column densities estimated above for the various solid state features are summarised in Table 2.
3.1.3. Spectral shape

Compared to many pre-main sequence objects with outflows which have been observed with the ISO LWS, it is striking how few lines have been detected in these very deep spectra (Saraceno et al. 1999). The low intensity of the CII line and the relative invariance of its strength with distance from IRS 5 shows that the UV field must be weak, even close to IRS 5 and the HH 29 region. The non-detection of high-\(J \) CO lines suggests that the outflow gas is neither very hot (\(T_{\text{ex}} \leq 200 \) K), nor very dense (\(n_H \leq 10^4 \) cm\(^{-3}\)).
Fig. 5a–f. Optical depth in various lines, superimposed by model fits to various gas phase lines. These models are run for a gas temperature of 200 K and Doppler width $\nu_D = 2 \text{ km s}^{-1}$, and column densities of $a) 10^{21} \text{ cm}^{-2}$, $b) 5 \times 10^{19} \text{ cm}^{-2}$, $c) 6 \times 10^{20} \text{ cm}^{-2}$ (uppermost model curve at the top of the figure was run for a temperature of 200K, the lower model curve was for the higher temperature of 2500 K, and shows the bandhead more clearly), $d) 10^{21} \text{ cm}^{-2}$, $e) 7 \times 10^{19} \text{ cm}^{-2}$, $f) 5 \times 10^{19} \text{ cm}^{-2}$. All data and models have an effective resolution of 700.

Table 2. Summary of solid state column densities

<table>
<thead>
<tr>
<th>Species</th>
<th>λ (µm)</th>
<th>Band strength (N_{col} cm$^{-2}$)</th>
<th>N_X / N_{H_2O}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2O</td>
<td>3</td>
<td>2×10^{-16}</td>
<td>$\geq 7.7 \times 10^{18}$</td>
</tr>
<tr>
<td>CO_2</td>
<td>4.27</td>
<td>7.6×10^{-17}</td>
<td>5.5×10^{17}</td>
</tr>
<tr>
<td>CO_2</td>
<td>15.2</td>
<td>1.1×10^{-17}</td>
<td>5.3×10^{17}</td>
</tr>
<tr>
<td>CH_4</td>
<td>7.66</td>
<td>7.3×10^{-18}</td>
<td>7.6×10^{16}</td>
</tr>
<tr>
<td>CH_3OH</td>
<td>3.54</td>
<td>2×10^{-16}</td>
<td>$\geq 2.6 \times 10^{18}$</td>
</tr>
</tbody>
</table>

3.2. HST NICMOS Images

A composite showing images taken from the HST archive is shown in Fig. 6. The spatial distribution of radiation (Fig. 6) shows a nebular structure with an opening angle of $\sim 60^\circ$. In two of the filters – the [Fe II] and 1.12 µm broad filters, emission from the 'jet' is clearly visible – most prominently in the [Fe II] filter (this contains the $\lambda 1.64$ [Fe II] line). It is notable that three [Fe II] lines are also seen in the ISO SWS spectra (see Sect. 4.4.1), and that the 'jet' is not detectable in the narrowband $\lambda 2.12 H_2$ filter.

To attempt confirm the lack of H_2 emission from the jet, a first order continuum subtraction, the $\lambda 2.12 H_2 + CO$ broad filter was scaled and subtracted from the narrowband $\lambda 2.12 H_2$ filter. The 'continuum subtracted image' formed in this way showed no evidence of H_2 emission from the jet down to a level of 2% of the peak $\lambda 2.12$ emission. This may be due to the fact that either there is no detectable H_2 emission from the jet, or that the H_2 emission is exactly cancelled out by the CO bandhead emission contained in the $2.12 H_2 + CO$ broad filter. Resolution of this will require sensitive echelle spectroscopy which is not yet available. By contrast, [Fe II] emission is clearly visible without any attempt to 'continuum subtract'.

The mass of the torus was estimated to be 0.1–0.3 M_\odot, the full opening angle was $\sim 100–110^\circ$, and the radius 630 AU (Lucas & Roche 1996). A similar bipolar geometry of L1551 IRS 5 has been found also by MH97 in extensive modelling which, among other things, has shown that the actual size and mass of the dusty surroundings of IRS 5 is at least an order of magnitude larger ($\sim 10^4$ AU and $\sim 10 M_\odot$, respectively). The distribution of near-IR emission has been studied towards this source by Lucas & Roche (1996), who used image sharpening techniques to obtain a deconvolved angular resolution with a FWHM of 0.3'.

[42x396] Optical depth in various lines, superimposed by model fits to various gas phase lines. These models are run for a gas temperature of 200 K and Doppler width $\nu_D = 2 \text{ km s}^{-1}$, and column densities of $a) 10^{21} \text{ cm}^{-2}$, $b) 5 \times 10^{19} \text{ cm}^{-2}$, $c) 6 \times 10^{20} \text{ cm}^{-2}$ (uppermost model curve at the top of the figure was run for a temperature of 200K, the lower model curve was for the higher temperature of 2500 K, and shows the bandhead more clearly), $d) 10^{21} \text{ cm}^{-2}$, $e) 7 \times 10^{19} \text{ cm}^{-2}$, $f) 5 \times 10^{19} \text{ cm}^{-2}$. All data and models have an effective resolution of 700.

Table 2. Summary of solid state column densities

<table>
<thead>
<tr>
<th>Species</th>
<th>λ (µm)</th>
<th>Band strength (N_{col} cm$^{-2}$)</th>
<th>N_X / N_{H_2O}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2O</td>
<td>3</td>
<td>2×10^{-16}</td>
<td>$\geq 7.7 \times 10^{18}$</td>
</tr>
<tr>
<td>CO_2</td>
<td>4.27</td>
<td>7.6×10^{-17}</td>
<td>5.5×10^{17}</td>
</tr>
<tr>
<td>CO_2</td>
<td>15.2</td>
<td>1.1×10^{-17}</td>
<td>5.3×10^{17}</td>
</tr>
<tr>
<td>CH_4</td>
<td>7.66</td>
<td>7.3×10^{-18}</td>
<td>7.6×10^{16}</td>
</tr>
<tr>
<td>CH_3OH</td>
<td>3.54</td>
<td>2×10^{-16}</td>
<td>$\geq 2.6 \times 10^{18}$</td>
</tr>
</tbody>
</table>

3.2. HST NICMOS Images

A composite showing images taken from the HST archive is shown in Fig. 6. The spatial distribution of radiation (Fig. 6) shows a nebular structure with an opening angle of $\sim 60^\circ$. In two of the filters – the [Fe II] and 1.12 µm broad filters, emission from the 'jet' is clearly visible – most prominently in the [Fe II] filter (this contains the $\lambda 1.64$ [Fe II] line). It is notable that three [Fe II] lines are also seen in the ISO SWS spectra (see Sect. 4.4.1), and that the 'jet' is not detectable in the narrowband $\lambda 2.12 H_2$ filter.

To attempt confirm the lack of H_2 emission from the jet, a first order continuum subtraction, the $\lambda 2.12 H_2 + CO$ broad filter was scaled and subtracted from the narrowband $\lambda 2.12 H_2$ filter. The 'continuum subtracted image' formed in this way showed no evidence of H_2 emission from the jet down to a level of 2% of the peak $\lambda 2.12$ emission. This may be due to the fact that either there is no detectable H_2 emission from the jet, or that the H_2 emission is exactly cancelled out by the CO bandhead emission contained in the $2.12 H_2 + CO$ broad filter. Resolution of this will require sensitive echelle spectroscopy which is not yet available. By contrast, [Fe II] emission is clearly visible without any attempt to 'continuum subtract'.

The mass of the torus was estimated to be 0.1–0.3 M_\odot, the full opening angle was $\sim 100–110^\circ$, and the radius 630 AU (Lucas & Roche 1996). A similar bipolar geometry of L1551 IRS 5 has been found also by MH97 in extensive modelling which, among other things, has shown that the actual size and mass of the dusty surroundings of IRS 5 is at least an order of magnitude larger ($\sim 10^4$ AU and $\sim 10 M_\odot$, respectively). The distribution of near-IR emission has been studied towards this source by Lucas & Roche (1996), who used image sharpening techniques to obtain a deconvolved angular resolution with a FWHM of 0.3'.
Based on Monte Carlo modelling, they suggested that the light originated from the scattered light associated with a circumstellar torus with an evacuated bipolar cavity.

3.3. Two-dimensional radiative transfer model

In order to interpret the observations in a quantitative way, we constructed a self-consistent two-dimensional (2D) radiative transfer model for L1551 IRS 5. Whereas MH97 have already presented a comprehensive model for this object, their calculations were affected by numerical energy conservation problems resulting from very high optical depths of the model and incomplete convergence of the iterations. The problem, which mainly affected the total luminosity of the central object and the near- to mid-IR parts of the SED in the MH97 model, has now been improved (see, e.g., the model of HL Tau by Men’shchikov et al. 1999, hereafter MHF99).

In this paper, we have recomputed the model using the modified version of the code and the new constraints provided by the ISO and HST observations presented above. Our approach and the model are basically the same as those in MH97 and MHF99. We refer to the papers for more detailed discussion of our approach, computational method, model parameters, and ‘error bars’ of the modelling.

3.3.1. Geometry

Following MH97, we assume that the central star (or a binary) is surrounded by a dense core (with a radius of ∼100 AU), which is embedded within a much larger non-spherical envelope (outer radius of ∼3 x 10^4 AU). A conical cavity has been excavated by the bipolar outflow, and has a full opening angle of 90°. This axially-symmetric geometry is the same for both the core and the surrounding material. The geometry is shown in Fig. 7.

The density distributions inside the torus and in the bipolar cavities are functions of only the radial distance r from the centre, where the source of energy is located. We neglect in this model the putative binary system inside the dense core, because its semi-major axis (∼20 AU) would be much smaller than the radius of the core. If the binary does exist, it is unlikely that there is a very large cavity around it, with a radius of ∼20 AU. Our modelling has shown that in the presence of such a dust-free cavity, most of the inner dust boundary would have temperatures of only ∼150 K, far too low to explain the observed SED of L1551 IRS 5. In fact, the near- and mid-IR fluxes would be (many) orders of magnitude less than the observed ones. Instead of assuming that the entire binary fits into the dust-free cavity, we adopt the view that a substantial amount of gas and dust exists deeper inside the core, as close as ∼0.2 AU to the central source(s) of energy (see Sect. 4.1.1 later).
3.3.2. Grain properties

Assuming a similarity between HL Tau and L1551 IRS 5, we adopted for the latter the dust properties proposed by MHF99. The only difference is that magnesium-iron oxide grains (Mg$_{0.6}$Fe$_{0.4}$O) are absent, because there is no evidence of an emission/absorption signature close to 18 μm that would warrant introducing another free parameter to the model (Fig. 8).

1. The large dust particles have an unspecified composition, radii 100–6000 μm, size distribution exponent $p = -4.2$, dust-to-gas mass ratio $\rho_{d}/\rho = 0.01$, average material bulk density $\rho_{gr} = 2.0$ g cm$^{-3}$, sublimation temperature $T_{\text{sub}} \sim 1700$ K. They show a gray (i.e., independent of wavelength) extinction efficiency for $\lambda < 600$ μm, whereas at longer wavelengths it falls off as $\lambda^{-0.5}$.

2. Core-mantle grains are assumed to contain silicate cores (Mg$_{0.6}$Fe$_{0.4}$SiO$_{3}$) with $\rho_{gr} = 3.2$ g cm$^{-3}$, covered by dirty ice mantles. The ratio of the total core-mantle grain radii to those of the pyroxene cores is 1.4, and their total radii are 0.11–0.7 μm, $p = -4.2$, $\rho_{d}/\rho = 0.0037$. The dirty mantles consist of water ice polluted by small amorphous carbon grains. The sublimation temperature of the mantles was assumed to be ~100 K.

3. Amorphous carbon grains with radii 0.08–0.5 μm, $p = -4.2$, $\rho_{d}/\rho = 0.0063$, $\rho_{gr} = 2.0$ g cm$^{-3}$.

The contributions to the extinction towards L1551 IRS 5 are shown in Fig. 8.

The first component of very large grains is present only inside the dense torus (0.2 AU $\leq r \leq$ 250 AU), where all of the smaller grains are assumed to have grown into the large particles. The two other grain components exist only outside (250 AU $\leq r \leq$ 3 \times 104 AU), in the extended envelope of much lower density. As in any model, the results depend on the accuracy of the input parameters and the assumptions made. A major source of uncertainty in a model such as the one used here, will be the assumptions adopted for the grain properties. Further details on the choice of grain properties and their effect on the model results have been discussed by MHF99 and references therein.

3.3.3. Parameter space

As has been discussed in detail by MH97 and MHF99, the parameter space available to numerical modelling is very large. There are many poorly constrained parameters, few of which can be fixed a priori, to reduce the space. This situation requires that all available observational information has to be taken into account to better constrain the models. As in the earlier modelling, we have used as observational constraints all existing photometry data with different beam sizes (from optical to millimetre wavelengths), intensity profiles at 50 μm, 100 μm, 1.25 mm, 1.3 mm, and visibility curves from interferometry at 0.87 mm and 2.73 mm (see references in MH97). In addition to the constraints, we used in the new modelling our HST image at 2.12 μm and the SWS and LWS spectrophotometry presented above.
Table 3 lists the main input parameters of our model. The opening angle has not been varied, being fixed at the value found by MH97. Likewise, the viewing angle and the outer boundary also have not been varied extensively in our new modelling. We varied mainly the radial density profile and the total mass (or the total optical depth in the mid-plane). The dust grain parameters, the primary source of uncertainties in this kind of modelling, was also mostly fixed at the values adopted by MH97 for HL Tau.

Numerical parameters related to the accuracy of the model are the number of radial points (277), the number of azimuthal angles for the integration of intensity moments (10), the number of azimuthal angles for the observable flux calculation (50), the number of wavelengths (217), the number of points for convolved intensity maps (600 × 600), and that for the visibility calculations (4000 × 4000). Conservation of the total luminosity for both the equivalent spherical envelope and the 2D model was better than about 7% at all radial points, certainly good enough compared to the total uncertainties involved in the modelling.

3.3.4. Spectral energy distribution

The model SED is compared to the observations of L1551 IRS 5 in Figs. 9 and 10. Only one, best-fitting SED corresponding to the viewing angle of 44°5 (measured from the mid-plane) is displayed. The effect of beam sizes is also visible in this plot, as the difference between the dotted and the solid lines in the model SED. To illustrate the influence of the bipolar outflow cavities, the SED for the equivalent spherical envelope is also shown.

Table 3. Main input parameters of the IRS 5 model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>160 pc</td>
</tr>
<tr>
<td>Central source luminosity</td>
<td>45 L_\odot</td>
</tr>
<tr>
<td>Stellar effective temperature</td>
<td>5500 K</td>
</tr>
<tr>
<td>Flared disc opening angle</td>
<td>90°</td>
</tr>
<tr>
<td>Viewing angle</td>
<td>44°5</td>
</tr>
<tr>
<td>Torus dust melting radius</td>
<td>0.2 AU</td>
</tr>
<tr>
<td>Torus outer boundary</td>
<td>3×10^4 AU</td>
</tr>
<tr>
<td>Torus total mass (gas+dust)</td>
<td>$13 M_\odot$</td>
</tr>
<tr>
<td>Density at melting radius</td>
<td>8.0×10^{-13} g cm$^{-3}$</td>
</tr>
<tr>
<td>Density at outer boundary</td>
<td>2.6×10^{-20} g cm$^{-3}$</td>
</tr>
<tr>
<td>Outflow visual τ_v</td>
<td>10</td>
</tr>
<tr>
<td>Midplane τ_v</td>
<td>120</td>
</tr>
</tbody>
</table>

Fig. 9. Comparison of the new IRS 5 model with the ISO SWS, LWS spectrum, and various, mostly ground-based, photometric points. The individual fluxes (taken from MH97) are labelled by different symbols, to distinguish between old observations (before 1980, circles), recent ones (1980–1990, diamonds), and new data (after 1990, triangles). Error bars correspond to total uncertainties of the observations. The stellar continuum (which would be observed, if there were no circumstellar dust, is also displayed. The model assumes that we observe the torus at an angle of 44°5 (relative to its midplane). The effect of beam sizes is shown by the vertical lines and by the difference between the dotted and solid lines in the model SED. Whereas only the lower points of the vertical lines are relevant, we have connected them to the adjacent continuum by straight lines, to better visualise the effect. To illustrate the influence of the bipolar outflow cavities, the SED for the equivalent spherical envelope is also shown.

Fig. 10. Same as in previous figure but it shows in more detail the SWS and LWS spectrophotometry (2–200 μm). The small insert displays in even greater detail the region of the ‘mismatch’ between the SWS and LWS data (38–50 μm). The effect of beam sizes is also visible in this plot, as the difference between the dotted and the solid lines in the model SED. To illustrate the influence of the bipolar outflow cavities, the SED for the equivalent spherical envelope is also shown.
disc and the surrounding material. Since the real density structure in the vertical direction is generally unknown, we adopted a density distribution independent of the polar angle. This introduces some degree of uncertainty in the derived value of the viewing angle, although the fact that the source is hidden behind the ‘wall’ of extinction produced by the core and the torus (and close to the apex of the conical cavity) seems to be well established both by observations and by the modelling.

The overall quantitative agreement of the model SED with the entire set of observations of L1551 IRS 5 is obvious. The total model fluxes corrected for the beam sizes (solid lines in Figs. 9 and 10) coincide well with the observed fluxes, except for those in the near IR, although the shape of the SED is still very similar to the observed one. The effect of different apertures is evident everywhere, except for only the mid-IR wavelengths, where the source is very compact and most of its radiation fits into the SWS beam. Note that at millimetre waves the model predicts significantly larger total fluxes compared to the observed ones, indicating that the outer envelope is very extended and sufficiently massive.

The insert in Fig. 10 shows that the ‘jump’ between the SWS and LWS data at \(\sim 45 \) \(\mu \)m is a consequence of the different beam sizes. The model shows a clear water ice absorption feature at \(3 \) \(\mu \)m which is very similar to the observed profile. The agreement of the model with SWS in the \(7–9 \) \(\mu \)m region is not very good; there are also smaller deviations in the \(15–40 \) \(\mu \)m part of SWS. As we mostly fixed the grain properties, we have not attempted to find a better fit by varying the dust model (it would be extremely time-consuming). It seems very likely, however, that small changes in the dust chemical composition or temperature profile would be sufficient to fit the SED almost perfectly. We do not believe, however, that such an adjustment makes sense, given the much higher overall uncertainties of the problem at hand.

3.3.5. Densities and temperatures

The structure of our model of L1551 IRS 5, which is very similar to that presented by MH97, is illustrated in Fig. 11. The distribution of densities and temperatures in the model were chosen to be similar to those of HL Tau (MHF99), except for the flat density area between 250 and 2000 AU which is very likely to exist in IRS 5. The density structure in the inner few thousand AU is constrained by the SED (Sect. 3.3.4), the submm/mm visibilities (Sect. 3.3.6), and the long-wavelength intensity maps (Sect. 3.3.7). The visibilities suggest that the density structure consists of a dense core inside a lower density envelope. On the other hand, the intensity maps might also imply high densities are present at distances of \(\sim 4000 \) AU from the central source. Both requirements can however only be reconciled by adopting a flat density distribution. We have no clear understanding of the physical significance of this deduction (also inferred by MH97), which needs to be tested by other observations.

There are three regions that make up the torus: the innermost very dense core with a \(\rho \propto r^{-1} \) density gradient, and low-density outer parts with a broken power-law \((\rho = \text{const,} \rho \propto r^{-1}) \) density profile. A steep \(\rho \propto \exp(-r^2) \) transition zone between them (having a half-width at half-maximum of \(\approx 70 \) AU) effectively forms the outer boundary of the inner dense torus. The boundary of the torus extends from \(\sim 80 \) to \(250 \) AU and is effectively truncated by the exponential at about \(200 \) AU, very similar to the density profile of HL Tau (MHF99). Conical surfaces of the bipolar outflow cavities define the opening angle of the torus to be \(90^\circ \). Dust evaporation sets the inner boundary at \(\approx 0.4 \) AU, while the outer boundary is arbitrarily put at a sufficiently large distance of \(3 \times 10^4 \) AU. The polar outflow cones with a \(\rho \propto r^{-2} \) density distribution have much lower density than the torus.

In the absence of any reliable constraints, the conical outflow regions are assumed to have a \(\rho \propto r^{-2} \) density profile which is consistent with available data. The temperature profile displays a jump at \(250 \) AU, where the hotter normal-sized dust grains of the envelope are assumed to be coagulated into the large grains of the dense core. We refer to MH97 and MHF99 for a more detailed discussion of the density structure and of the uncertainties of our model.

3.3.6. Submillimetre and millimetre visibilities

The model visibilities for two directions in the plane of sky, parallel and orthogonal to the projected axis of the torus (MH97, MHF99) are compared to the available interferometry data in Fig. 12. The model shows good agreement with the spatial information contained in the observed visibilities. The latter do not constrain, however, density distribution in the outer envelope. Instead, intensity maps over a larger area, obtained with large
beams, should be useful in determining the density structure on the largest scales, thus giving an idea of the total mass of the circumstellar material. In fact, our model gives much larger mass (\(\sim 13 M_\odot\)) and extent (\(\sim 3 \times 10^4\) AU) of the envelope compared to other simplified models which do not take into account all available observations.

The observations by Looney et al. (1997) were added to the figure after our modelling has been completed; they show noticeably lower visibilities compared to those presented by Keene & Masson (1990), which were fit by the model reasonably well. This is clearly a consequence of the assumed \(\lambda^{-0.5}\) slope of the opacities by very large grains in this wavelength range (Sect. 3.3.2). The slope has been chosen in our model on the basis of a few millimetre fluxes alone, without a careful analysis of its density and temperature structure. One cannot conclude, however, that an envelope has very little mass on the basis of a few millimetre fluxes alone, without a careful analysis of its density and temperature structure.

3.3.7. Far-IR and millimetre intensity profiles

Model intensity profiles at 50 \(\mu\)m, 100 \(\mu\)m, 1.25 mm, and 1.3 mm (perpendicular to the outflow direction) are compared with the available observations in Figs. 13 and 14. The model intensity profiles have been convolved with the appropriate circular Gaussian beams. Unconvolved intensity distributions are also shown for reference. As in MH97, the new model shows very good agreement with the measurements, suggesting that the density and temperature distributions of the model are realistic.

Note that the temperature of the outermost parts may be controlled by the external radiation field, which is assumed to be a 5 K blackbody in our model. The radiation field defines the lower limit for the dust temperature in the distant parts of the torus. Thus, it is a key parameter that determines how extended the envelope would appear to millimetre observations after subtraction of the background radiation field. In fact, if the outer radiation field keeps the torus warm (e.g., \(\sim 20\) K), then the millimetre intensity maps, which are sensitive to much cooler material, would reveal very little radiation from the envelope. One cannot conclude, however, that an envelope has very little mass on the basis of a few millimetre fluxes alone, without a careful analysis of its density and temperature structure.

3.3.8. HST image at 2.12 \(\mu\)m

An additional check of our model at short wavelengths is enabled by the HST NICMOS image of IRS 5 at 2.12 \(\mu\)m. In Fig. 15, we compare the model intensity profiles along the same orthogonal directions on the sky, parallel and perpendicular to the axis of the outflow, with the corresponding intensity strips taken from the observed images (Sect. 3.2). The model images were convolved with the HST point-spread function of 0\'18;
the unconvolved model intensity distributions are also shown for reference. Distortion of the observed profile in the lower panel (plateau and widening of the left wing) is caused by the removal of the intensity spike due to a bright knot slightly off the jet axis on the HST image.

The model of L1551 IRS 5 predicts that the observed intensity peak should be displaced by approximately 1.5” along the outflow direction from the completely obscured central energy source. This also has been suggested on the basis of the morphology of the optical and radio images (Campbell et al. 1988). Similar displacements in the near-IR images have been found in the recent modelling of HL Tau (see MHF99 for more discussion). Unfortunately the HST/NICMOS images do not have the astrometric accuracy needed to test this idea.

Taking into account the approximations involved in the model geometry and in the radiative transfer method, which should affect our results especially at short wavelengths, the agreement is good. The remaining discrepancies can be explained by a more complex density distribution around IRS 5, which in reality should depend also on the polar angle (MHF99). In Fig. 16 we have presented near-IR model images of L1551 IRS 5 with a 0.18” resolution (equivalent to the HST image of the source at 2.12 μm, Fig. 15). The intensity profiles predicted by our model can be tested by future high-resolution observations.

3.3.9. Average density estimates

Table 4 compares average densities of our model with the observational estimates. The density reported by Keene & Masson (1990) (see MH97) from 2.7 mm interferometry was an overestimate because they assumed a steep long-wavelength absorption opacity of large grains adopted in our work, the estimate would ∼ 0.4 for reference. The absolute positional co-ordinates of the distribution that is predicted – and well matched by the model. As in previous figures, we also plotted the unconvolved model intensity distribution (normalised to 0.75) that is dominated by the radiation scattered and emitted by the dense compact torus.

Table 4. Average density estimates for L1551 IRS 5 from observations compared to the predictions of our model (references are given in MH97, Table 2).

<table>
<thead>
<tr>
<th>Tracer</th>
<th>Rad. “</th>
<th>Rad. AU</th>
<th>Obs. ⟨nH2⟩ cm⁻³</th>
<th>Mod. ⟨nH2⟩ cm⁻³</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃</td>
<td>60.0</td>
<td>9600</td>
<td>∼ 1 × 10⁵</td>
<td>1.7 × 10⁵</td>
<td>∼ 1.7</td>
</tr>
<tr>
<td>1.1 mm</td>
<td>30.0</td>
<td>4800</td>
<td>∼ 4 × 10⁵</td>
<td>5.0 × 10⁵</td>
<td>∼ 1.3</td>
</tr>
<tr>
<td>400 μm</td>
<td>17.5</td>
<td>2800</td>
<td>∼ 1 × 10⁶</td>
<td>8.0 × 10⁵</td>
<td>∼ 0.8</td>
</tr>
<tr>
<td>C¹⁸O</td>
<td>13.8</td>
<td>2208</td>
<td>∼ 4 × 10⁵</td>
<td>8.0 × 10⁵</td>
<td>∼ 2.0</td>
</tr>
<tr>
<td>1.4 mm</td>
<td>4.0</td>
<td>640</td>
<td>∼ 1 × 10⁷</td>
<td>3.7 × 10⁶</td>
<td>∼ 0.4</td>
</tr>
<tr>
<td>C¹⁸O</td>
<td>3.5</td>
<td>560</td>
<td>∼ 3 × 10⁷</td>
<td>5.0 × 10⁶</td>
<td>∼ 0.2</td>
</tr>
<tr>
<td>2 μm</td>
<td>3.0</td>
<td>480</td>
<td>∼ 4 × 10⁶</td>
<td>7.0 × 10⁵</td>
<td>∼ 1.8</td>
</tr>
<tr>
<td>2 μm</td>
<td>2.0</td>
<td>320</td>
<td>∼ 1 × 10⁸</td>
<td>2.4 × 10⁷</td>
<td>∼ 0.2</td>
</tr>
<tr>
<td>2.7 mm</td>
<td>0.4</td>
<td>64</td>
<td>∼ 1 × 10¹¹</td>
<td>1.0 × 10⁸</td>
<td>∼ 0.01</td>
</tr>
</tbody>
</table>
4. Emission lines

Several narrow emission lines were detected in the L1551 IRS 5 spectrum, specifically [Fe II] λ 17.94 and λ 25.99, Si II λ 31.48, OI λ 63.2, OH λ 84.4 and CII λ 157.7. These can be seen in Fig. 4 and are now discussed by species.

4.1. [Fe II]

[Fe II] line emission is often detected towards starburst galaxies, where it has been interpreted as having been excited by collisional excitation in supernova remnant shocks (Moorwood & Oliva 1988; Lutz et al. 1998). [Fe II] lines have been reported towards several supernova remnants (Oliva et al. 1999a [RCW 103], b [IC 443]), galactic nuclei (Lutz et al. 1996 [SgrA*], 1997 [M82]), and in regions known to have energetic outflows (Wesselius et al. 1998 [S106 IR and Cepheus A]). Optical echelle spectra towards the jet and working surface where the jet interacts with the surrounding medium (Fridlund & Liseau 1988) show linewidths of 100 and 200 km s$^{-1}$ respectively. These results unambiguously show that shock excitation is occurring, although the position of the working surface in L1551 IRS 5 lies outside the SWS field of view. From the raw data, the linewidth of the λ 26.0 [Fe II] line, deconvolved from the instrumental resolution, is ≤ 230 km s$^{-1}$. The ratios [Fe II] λ 35.3/λ 26.0 and [Fe II] 24.5/λ 17.9 should be density sensitive, although their variation over a wide range of densities is only a factor of ~ 2. The transitions have high critical densities $n_{\text{cr}} \sim 10^8$ cm$^{-3}$ and high excitation temperatures $\gtrsim 400$ K. As minor coolants, they do not significantly affect the thermal structure of the cloud. To test the possibility that the gas could be photoionised, we ran the photoionisation code CLOUDY (Ferland et al 1998) over a wide range of values. The [Fe II] λ 24.5 line is only efficiently excited under conditions of high density ($n_H \gtrsim 10^6$ cm$^{-3}$) and high UV illumination ($G_0 \gtrsim 10^6$) (see also Hollenbach et al. 1991) – however, it is impossible to excite the [Fe II] λ 17.9 line for reasonable values of ionising flux near L1551 IRS 5, due to the low effective temperature of the star ($T_{\text{eff}} \sim 5500$ K). A shocked environment seems a more likely environment to excite the lines. Such a shocked environment could be associated with the optical jet emanating from L1551 IRS 5. We detect emission from [Fe II] λ 17.9 and λ 26.0 of $9.44 \pm 1.5 \times 10^{-16}$ W m$^{-2}$ and $2.04 \pm 0.3 \times 10^{-15}$ W m$^{-2}$ respectively, with a marginal detection of [Fe II] λ 35.3 of $1.62 \pm 0.6 \times 10^{-15}$ W m$^{-2}$. There are further [Fe II] lines at λ 5.34, λ 51.3 and λ 87.4 for which we set 2σ upper limits of 1.05×10^{-15}, 6.52×10^{-16} and 3.6×10^{-16} W m$^{-2}$ respectively. The λ 5.34 and λ 17.9 lines can be used to constrain density, and the λ 26 line can be used with other lines as a temperature estimator. However, as pointed out by Greenhouse et al. (1997), Lutz et al. (1998) and Justtanont et al. (1999), other excitation mechanisms such as fluorescence or photoionisation may be important in certain environments.

4.1.1. Observed transitions

A diagram of the lowest energy levels of [Fe II] is shown in Fig. 17 and the major transitions in the range of the ISO spectrometers are listed in Table 5. The observed line fluxes are also given, along with the aperture sizes of the data. From these it is clear that for extended emission several of the line intensity ratios are aperture dependent. Fortunately, some of the potentially most important lines, viz. the 26, 17.9 and 24.5 lines can be used with other lines as a temperature estimator. However, as pointed out by Greenhouse et al. (1997), Lutz et al. (1998) and Justtanont et al. (1999), other excitation mechanisms such as fluorescence or photoionisation may be important in certain environments.

The table also lists intrinsic [Fe II] line fluxes, F_{in}, i.e. after a correction for the attenuation by dust extinction has been applied. The values of the dust opacities used for this correction were obtained from the best fit model of the overall SED of IRS 5 (see Sect. 3 and below) and are displayed in Figs. 8 and 18. Contrary to naive expectations, extinction has a considerable effect on the line ratios in IRS 5 even in the mid- to far-infrared. Not only does the temperature diagnostic ratio 17.9/26 become slightly altered, but is actually inverted, changing from the observed value of 0.5 to the ‘de-reddened’ one of 2.

Emission lines of [Fe II] detected in the SWS spectrum of L1551 IRS 5 include transitions at 26 and 17.9 μm. Further, the high excitation lines (cf. Fig. 17) [Fe II] λ 1.64 (Sect. 5.2) and λ 0.716 (Fridlund & Liseau, in preparation) are also clearly present in this source, as well as the [Si II] λ 35 line. Therefore, in the absence of any nearby bright source of UV radiation, excitation of these lines by shocks presents the only known, feasible alternative. However, the comparison of the line intensity ratios for various lines deduced from shock models (Hollenbach & McKee 1989; Hollenbach et al. 1989) with those of the observations makes no immediate sense. In fact, results obtained from
within the field of view of the SWS; Fridlund et al. 1997). This is, I
ble 5), would imply an intensity of the non-extinguished line
the \([\text{Fe II}]\)
mid-infrared emission lines. For instance, the observed flux of
the remarkable strength of the observed
Diagram of the 9 lowest fine structure levels in \([\text{Fe II}]\). The
\(\lambda\)
\(\Omega/\Omega_{21}\)
\(10^{13} \times F_{\text{obs}}\)
\((F/F_{21})_{\text{obs}}\)
\(10^{13} \times F_{0}\)
\((F/F_{21})_{0}\)

SWS 6 – 1 5.34 6.58 \times 10^{-9} 0.74 < 5. < 0.25 13.2 < 27 000 < 3 000
SWS 7 – 6 17.94 8.88 \times 10^{-9} 1.00 9.5 \pm 1.5 0.47 \pm 0.10 5.4 21 2.4
SWS 8 – 7 24.52 8.88 \times 10^{-9} 1.00 3.8 0.19 4.0 2 0.2
SWS 2 – 1 25.99 8.88 \times 10^{-9} 1.00 20 \pm 3 1.00 3.8 9 1.0
SWS 3 – 2 35.35 1.55 \times 10^{-8} 1.74 16 \pm 6 0.80 \pm 0.32 3.5 5 0.6
LWS 4 – 3 51.28 1.81 \times 10^{-7} 20.4 < 3.3 < 0.16 3.1 < 0.7 < 0.08
LWS 5 – 4 87.41 1.81 \times 10^{-7} 20.4 < 1.8 < 1.8 2.7 < 0.3 < 0.03

Table 5. SWS and LWS aperture sizes at various \([\text{Fe II}]\) transitions, observed and dereddened fluxes

Fig. 17. Diagram of the 9 lowest fine structure levels in \([\text{Fe II}]\). The
wavelengths of the major SWS and LWS transitions are indicated in
\(\mu\text{m}\) next to the solid connecting bars. In addition, two lines from higher
states (levels 10 and 17) and which were discussed in the text are
indicated by the dashes. Level energies are in the temperature scale
(K).

these line ratios (including upper limits to, e.g., the hydrogen re-
combination lines) lead to diverging conclusions regarding the
shock speeds and pre-shock densities in the source. When based
on different chemical species, these inconsistencies could pos-
sibly be accounted for by differences in the abundances between the
source and the models (the models use highly depleted abund-
ances, e.g. for iron \(A(\text{Fe}) = 10^{-6}\), relative to hydrogen nuclei).

At first, an abundance mismatch could also be thought of
as capable explaining the remarkable strength of the observed
mid-infrared emission lines. For instance, the observed flux of the
\([\text{Fe II}]\) \(\lambda 26\) line, \(F_{26, \text{obs}} = 2 \times 10^{-12} \text{erg cm}^{-2} \text{s}^{-1}\) (Ta-
ble 5), would imply an intensity of the non-extinguished line
\(I_{26} > 3 \times 10^{-2} \text{erg cm}^{-2} \text{s}^{-1} \text{sr}^{-1}\), assuming the jets from IRS 5
to be responsible for the shock excitation \((\Omega_{\text{jets}} < 6 \times 10^{-11} \text{sr}^{-1})
within the field of view of the SWS; Fridlund et al. 1997). This is,
however, significantly larger than the maximum intensity from
the published shock models (Hollenbach & McKee 1989, which
is \(I_{26, \text{mod}} = 2 \times 10^{-2} \text{erg cm}^{-2} \text{s}^{-1} \text{sr}^{-1}\) and which pertains to
the extreme parameter values of the models, viz. \(n_0 = 10^{6} \text{cm}^{-3}\)
and \(v_{\text{shock}} = 150 \text{ km s}^{-1}\). Therefore, matching the observations
would need still higher pre-shock densities \((n_0 > 10^{6} \text{cm}^{-3})\)
and would thus be indicative of post-shock densities of the or-
der of \(> 10^{7} \text{cm}^{-3}\). Such high densities are nowhere observed
in or along the jets. The fact that the jet emission in the density
sensitive \([\text{S II}]\) \(\lambda 0.6717\) to \(\lambda 0.6734\) line ratio is nowhere sat-
urated implies that post-shock jet-densities never exceed a few
times \(10^{5} \text{cm}^{-3}\) (Fridlund & Liseau 1988). Finally, the dense-
and-fast-jet scenario can be ruled out since the expected H I
recombination line emission (e.g., Br \(\alpha\)) that should be excited
in this scenario is not observed. In conclusion, it seems obvious
that the hypothesis that the lines are excited by one or both of
the jets encounters major difficulties.

An alternate model, presented below, provides not only a
satisfactory explanation of the observed \([\text{Fe II}]\) spectrum, but
also a coherent picture of the central regions of the IRS 5 system.
An \([\text{Fe II}]\) source of dimension a few times \(10^{-2}\) cm, i.e. twice
the size of the central binary orbit (\(\sim 90 \text{ AU}\)), with densities of
the order of \(10^{3} \text{cm}^{-3}\) and at average gas temperatures of about
4000 K is capable of explaining the observed line fluxes. This
putative source of emission is situated at the centre of L1551
IRS 5 and seen through the circumstellar dusty material, which
attenuates the radiation both by extinction and by scattering (see
Figs 8 and 13). This configuration presumably constitutes the
base of the outflow phenomena from IRS 5. The precise nature of
the heating of the gas remains unknown, although one obvious
speculation would involve the interaction of the binary with the
surrounding accretion disc.

4.1.2. \([\text{Fe II}]\) excitation and radiative transfer

The model computations of the \([\text{Fe II}]\) spectrum made use of
the Sobolev approximation. This seems justified, since (a) ve-
locity resolved observed \([\text{Fe II}]\) lines have widths exceeding
200 km s\(^{-1}\) (e.g., 0.716 \(\mu\text{m}\); Fridlund & Liseau, in prepara-
tion) and (b) according to the above discussion, high velocity shocks
are needed to meet the energy requirements of the observed
emission. The energies of the \([\text{Fe II}]\) levels, Einstein \(A\)-values
and the wavelengths of the transitions were adopted from Quinet
et al. (1996). The number of radiative transitions included in the calculation was 1438. These lines are distributed from the FUV to the FIR spectral regions (0.16 to 87 \mu m) and the level energies span the range \(E/k = 0 \text{ to } 9.1 \times 10^4 \text{ K} \) (the ionisation potential of [Fe II] corresponds to nearly 1.9 \times 10^5 \text{ K}. The collision rate coefficients were calculated from the work by Zhang & Pradhan (1995), who provide effective collision strengths for 10 011 transitions among 142 fine structure levels in [Fe II]. These are Maxwellian averages for 20 temperatures in the range 1000 K to 10^5 K.

No lines of [Fe I] or [Fe III] (or of higher ionisation for that matter) have been detected from IRS 5, so that our assumption that essentially all iron is singly ionised seems reasonably justified. We further assume that iron is undepleted in the gas phase with solar chemical abundance, i.e. \(A(Fe) = 3.2 \times 10^{-5} \) (Grevesse & Sauval 1999). At temperatures significantly below 8000 K the gas would be only partially (hydrogen) ionised. In this case, we assume that the electrons are donated by abundant species with similar and/or lower ionisation potentials. In particular, primarily by Fe and Si plus other metals such as Mg, Al, Na, Ca etc., so that \(n_e \sim 2.5 A(Fe) n(H) \).

The line intensities were calculated for a range of gas kinetic temperatures and hydrogen densities and an example of the results is presented in Fig. 19. In the figure, intensity ratios for [Fe II] 5.34, 17.9 and 26.0 \mu m lines are shown. These lines are connected (see Fig. 17): the 17.9 \mu m and 5.34 \mu m lines originate from the same multiplet, \(^4\text{Fe} \). The upper level of the 17.9 \mu m line is at 3500 K above ground and its lower level is the upper level of the 5.34 \mu m line, which connects to the ground, and so does the 26 \mu m groundstate line (\(^6\text{De}\)). The corresponding SWS data are also shown in the graph, where the emitting regions have been assumed to be much smaller than any of the apertures used for the observations. These data indicate source temperatures to be somewhere in the range of 3000 to 5000 K and gas densities to be above 3 \times 10^7 \text{ cm}^{-3}.

4.1.3. [Fe II] model calculations and results

The model spectrum, ‘tuned’ to the SWS observations with the parameters of Sect. 4.1.1, is shown in Fig. 20. The upper panel of the figure displays most of the 1438 lines of the computed intrinsic [Fe II] spectrum, stretching from the far-UV to the far-IR. This spectrum suffers extinction by the circumstellar dust before it reaches the outside observer and is shown in the middle panel. Scattering by the circumstellar dust is of only low significance for the emission in the mid-infrared but is probably important at near-infrared and shorter wavelengths. In the lower panel of Fig. 20 a simple scattering model has been ap-
any uncertainty in the computed extinction curve. It is clear that future modelling of this source will need to address a wider parameter space, particularly of grain properties - however this is beyond current computational capabilities.

The spectrum of the adopted model (Table 6) is shown superposed onto selected regions of the observed SWS scans in Fig. 21. The theoretical fit is acceptable for most lines, except perhaps for the 24.52 μm transition which appears too strong in comparison with the observed line. All of the major [Fe II] lines are thermalised and optically thin, implying that the emission model can be easily scaled by keeping the parameter $N/\Delta v$ constant. For instance, models with higher velocity and lower density (e.g. 300 km s$^{-1}$ and 10^5 cm$^{-3}$) or vice versa (e.g. 15 km s$^{-1}$ and 10^7 cm$^{-3}$) would still yield the same [Fe II] intensities (but would otherwise disagree with the presence or absence of other lines in the spectrum of IRS 5). The cooling of the gas in all [Fe II] lines amounts to a few times $10^{-3} L_\odot$, which is comparable to the [O I] 63 μm luminosity, $\gtrsim 7 \times 10^{-5} L_\odot$. For comparison, the total luminosity generated by the shocks can be estimated as $\max L_n = 0.5 v_n^3 m_H \mu_{\text{gas}} n_0 \times \text{area} \sim 10 L_\odot$, where we have assumed a gas compression $n/n_0 \sim 10^2$. This amounts to about 20% of the total radiative luminosity of IRS 5 ($\sim 45 L_\odot$, Table 3). The largest uncertainty lies in the value of v_n, the dependence of which is cubic. However, the radiative luminosity of the IRS 5 system can be expected to be dominated by accretion processes, whereas the shock luminosity is prob-

![Fig. 20. The full [Fe II] spectrum of the discussed computations is displayed, comprising 1438 spectral lines from the far UV to the far IR. Upper: The intrinsic emission model of L1551 IRS 5. Middle: This spectrum observed through the circumstellar material at IRS 5. Lower: The maximum possible amount of scattered [Fe II] line radiation about 1" off the central source. The dotted horizontal line is meant to aid the eye.](image)

![Fig. 21. SWS observed spectral segments of four [Fe II] lines (unsmoothed raw data) with a constant local continuum subtracted. Superposed are the model spectral densities, F_λ in erg cm$^{-2}$ s$^{-1}$ μm$^{-1}$, discussed in the text. The source solid angle is $\Omega_{\text{source}} = 8.225 \times 10^{-12}$ sr, corresponding to 90 AU which is of the order of the binary orbit (twice the binary separation). The instrumental function, R_λ, is that of a point source and scan speed 4 of the SWS; the thick bar indicates the width of a resolution element.](image)

Table 6. [Fe II] line optical depths and intensities (Model: $T_{\text{kin}}=4000$ K, $n(H)=10^9$ cm$^{-3}$, log X/(dV/dr) = -10.46)

<table>
<thead>
<tr>
<th>Transition</th>
<th>λ μm</th>
<th>τ_{line}</th>
<th>I_{line} erg cm$^{-2}$ s$^{-1}$ sr$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–1</td>
<td>25.9896</td>
<td>2.26×10^{-2}</td>
<td>1.96×10^4</td>
</tr>
<tr>
<td>3–2</td>
<td>35.3519</td>
<td>2.05×10^{-2}</td>
<td>7.22×10^5</td>
</tr>
<tr>
<td>4–3</td>
<td>51.2847</td>
<td>1.20×10^{-2}</td>
<td>1.42×10^{10}</td>
</tr>
<tr>
<td>5–4</td>
<td>43.4126</td>
<td>4.34×10^{-3}</td>
<td>1.05×10^{-1}</td>
</tr>
<tr>
<td>6–1</td>
<td>5.3402</td>
<td>1.21×10^{-4}</td>
<td>9.24×10^9</td>
</tr>
<tr>
<td>7–6</td>
<td>17.9379</td>
<td>1.46×10^{-2}</td>
<td>3.75×10^3</td>
</tr>
<tr>
<td>8–7</td>
<td>24.5182</td>
<td>1.15×10^{-2}</td>
<td>1.20×10^1</td>
</tr>
<tr>
<td>9–8</td>
<td>35.7731</td>
<td>5.20×10^{-3}</td>
<td>1.78×10^9</td>
</tr>
<tr>
<td>10–6</td>
<td>1.6440</td>
<td>5.62×10^{-5}</td>
<td>5.79×10^3</td>
</tr>
<tr>
<td>17–6</td>
<td>0.7157</td>
<td>1.58×10^{-4}</td>
<td>2.36×10^2</td>
</tr>
<tr>
<td>25–6</td>
<td>0.5160</td>
<td>3.18×10^{-4}</td>
<td>2.46×10^2</td>
</tr>
</tbody>
</table>
ably generated by mass outflows. To order of magnitude, these estimates would then seem reasonable.

As to how the degree of ionisation of the gas, albeit low, is generated and maintained we have essentially no information. Dissociation, if initially molecular, and subsequent ionisation through shocks seems a likely option. In any case, one would expect the partially ionised gas to produce free-free continuum emission, with a flux density (in mJy) \(S_\nu = 5.44 \times 10^{-13} \, \text{mJy} \, (\nu, T) Z^2 T^{-0.5} \). From the [Fe II] model, the emission measure of the gas is \(EM = \int x^2 n^2 (\text{H}) \, ds = 6 \times 10^6 \, \text{cm}^{-6} \, \text{pc}^{-1} \), the free-free Gaunt factor \(g_\text{ff}(1.4 \, \text{GHz}, 4000 \, \text{K}) = 5 \) and the source solid angle \(\Omega = 5 \times 10^{-12} \, \text{sr} \). Consequently, we find at 1.4 GHz (21 cm wavelength) \(S_{1.4 \, \text{GHz}} = 3.9 \, \text{mJy} \), which is not far from what has actually been observed. The Very Large Array (VLA) measurements taken in August 1992 by Giovanni et al. (2000) obtained \(S_{1.4 \, \text{GHz}} = 3.3 \pm 0.3 \, \text{mJy} \) are closest in time to the ISO observations.

Recent observations with the SUBARU telescope by Itoh et al. (2000) have shown that the optical jet is dominated by [Fe II] lines, and suggest that the extinction to the jet is on average \(A_\nu \sim 7 \, \text{mag} \). Fridlund et al. (1997) provide observed H \(\alpha \) fluxes for the entire jet (ground based and HST), viz. \(F(H_\alpha)_{\text{obs}} = 4.2 \times 10^{-14} \, \text{erg} \, \text{s}^{-1} \, \text{cm}^{-2} \) (the working surface, knot D, alone radiates \(50 \, \text{mJy} \)) and the source solid angle \(\Omega = 5 \times 10^{-12} \, \text{sr} \). Consequently, we find at 1.4 GHz (21 cm wavelength) \(S_{1.4 \, \text{GHz}} = 3.9 \, \text{mJy} \), which is not far from what has actually been observed. The Very Large Array (VLA) measurements taken in August 1992 by Giovanni et al. (2000) obtained \(S_{1.4 \, \text{GHz}} = 3.3 \pm 0.3 \, \text{mJy} \) are closest in time to the ISO observations.

The shock models of Hollenbach & McKee (1989) predict that over the range \(v_\text{shock} = 40-150 \, \text{km} \, \text{s}^{-1} \) and \(n_0 = 10^3-10^6 \, \text{cm}^{-3} \); the intensity ratio of H\(\alpha/[\text{Fe II} 26 \, \mu\text{m}] \) should be \(\geq 30-500 \). Taking the observed value of the 26 \(\mu\text{m} \) line, \(F([\text{Fe II} 26 \, \mu\text{m}])_{\text{obs}} = 2 \times 10^{-12} \, \text{erg} \, \text{s}^{-1} \, \text{cm}^{-2} \), would then imply a ‘predicted’ H\(\alpha \) flux F(H\(\alpha \)) \(\geq 6 \times 10^{-11} - 9 \times 10^{-10} \, \text{erg} \, \text{s}^{-1} \, \text{cm}^{-2} \). This exceeds by more than one order of magnitude, the value inferred for the jet putatively extinguished by 7 magnitudes of visual extinction.

Since the intrinsic line ratio (H\(\alpha/[\text{H}\beta] \)) is equal to or larger than 3, dust extinction with \(A_\nu = 7 \, \text{mag} \) would result in a line ratio (H\(\alpha/[\text{H}\beta] \)) \(\geq 35 \) (see, e.g. Appendix B of Fridlund et al. 1993). The observed ratio is (H\(\alpha/[\text{H}\beta] \)) \(\geq 15 \) (Cohen & Fuller 1985), which is significantly smaller than the predicted lower limit to the line ratio. This would increase the discrepancy even more.

In summary, it is again concluded that the [Fe II] emission observed by the ISO-SWS is not dominated by the jet, but its source is of different origin. That the jet is emitting in [Fe II] lines has been known for some time and is not new, but the level of emission is not sufficient to explain the SWS observations.

4.2. Si II

The sole [Si II] line detected is the \(^2P_{3/2} - ^2P_{1/2} \) ground state magnetic dipole transition at \(\lambda 34.8 \). It should be one of the major coolants in hot \((T \geq 5000 \, \text{K}) \) gas. It has been previously suggested to be a shock tracer (Haas et al. 1986). We detect a flux of \(2.35 \pm 0.3 \times 10^{-15} \, \text{W} \, \text{m}^{-2} \) from this line. It is of interest to understand to what extent this flux is consistent with the prediction from our model of the central source.

\[
F_{\text{line}} = \frac{\Omega_{\text{source}}}{4\pi} h \nu_{\text{ul}} A_{\text{ul}} n_{\text{ul}} \Delta \ell
\]

with obvious notations. The fractional population of the upper level, \(f_{\text{ul}} \), is obtained from

\[
f_{\text{ul}} = \frac{n_{\text{ul}}}{n(\text{Si II})} = \left[1 + \frac{A_{\text{ul}} + n_{e} q_{\text{ul}}}{n_{e} q_{\text{lu}}} \right]^{-1},
\]

where the collision rate constants, \(q(T_e) \, (\text{cm}^3 \, \text{s}^{-1}) \), are related to the respective Maxwellian average of the collision strength, \(\gamma(T_e) \), by

\[
q_{\text{ul}} = \frac{8.6287 \times 10^{-6}}{g_{\text{ul}} T_e^{1/2}} \gamma_{\text{ul}}
\]

and

\[
\gamma_{\text{ul}} = \frac{g_{\text{ul}}}{g_{\text{lu}}} \exp \left(\frac{h \nu_{\text{ul}}}{k T_e} \right).
\]

At the 2\(\sigma \) level, upper limits can be set for \(F(\text{Si II} 68.5 \mu\text{m}) < 6.4 \times 10^{-20} \, \text{W} \, \text{cm}^{-2} \) and \(F(\text{Si III} 38.2 \mu\text{m}) < 3.7 \times 10^{-19} \, \text{W} \, \text{cm}^{-2} \), whence we can safely assume that essentially all silicon is singly ionised, \(n_{\text{ul}} \) can therefore be expressed as \(f_{\text{ul}} A(\text{Si}) n(\text{H}) \), where \(A(\text{Si}) \) is the abundance of silicon with respect to hydrogen nuclei.

Energy levels and Einstein-A values were adopted from Wiese et al. (1966) and Kaufman & Sugar (1986) and collision strengths from Callaway (1994). As for iron, silicon is assumed to be undepleted in the central core regions of L 1551 IRS 5 and we adopted the solar value of the silicon abundance, \(A(\text{Si}) = 3.2 \times 10^{-5} \) (Asplund 2000).

For the values of the model parameters, viz. \(n(\text{H}) = 10^6 \, \text{cm}^{-3} \) and \(n_{e} = 8 \times 10^4 \, \text{cm}^{-3} \) and \(T_e = 4000 \, \text{K} \), the fractional population becomes \(f_{\text{ul}} = 0.64 \). Further, in conjunction with \(\Omega_{\text{source}} = 8.2 \times 10^{-12} \, \text{sr} \) and \(\Delta \ell = 90 \, \text{AU} \), the intrinsic model flux then becomes \(F_0([\text{Si II}] 35 \, \mu\text{m}) = 2.2 \times 10^{-10} \, \text{erg} \, \text{cm}^{-2} \, \text{s}^{-1} \). Taking the dust extinction by the intervening disk into account, \(\tau_{35 \mu\text{m}} = 4.1 \) Fig. 18 leads to the predicted estimation of the observable flux, i.e. \(F_{\text{model}}([\text{Si II}] 35 \, \mu\text{m}) = 3.6 \times 10^{-12} \, \text{erg} \, \text{cm}^{-2} \, \text{s}^{-1} \).

In this undepleted case, the model flux is only slightly larger, by a factor of \(\sim 1.5 \), than the actually observed value. We conclude therefore that our model of the central regions in L 1551 IRS 5 is capable of correctly predicting the flux in the [Si II] 35 \(\mu\text{m} \) line. It is likely that most of this emission also originates in these central regions.

4.3. OH

The excitation of OH has been modelled by Melnick et al. (1987), who studied OH emission towards the Orion Nebula.
Table 7. Summary of IRS 5 H$_2$ line fluxes

<table>
<thead>
<tr>
<th>Line</th>
<th>λ (μm)</th>
<th>Flux W m$^{-2}$</th>
<th>$I_{\text{line}}/I_{S(0)}$</th>
<th>Thermal PDR High A_v C-shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$ S(0)</td>
<td>2.223</td>
<td>7.9 \pm 0.8 \times 10$^{−18}$</td>
<td>5.6 \pm 0.1 \times 10$^{−18}$</td>
<td>0.72 0.93 0.21</td>
</tr>
<tr>
<td>H$_2$ S(1)</td>
<td>2.122</td>
<td>1.1 \pm 0.1 \times 10$^{−17}$</td>
<td>6.0 \pm 0.1 \times 10$^{−18}$</td>
<td>1.00 1.00 1.00</td>
</tr>
<tr>
<td>H$_2$ S(2)</td>
<td>2.034</td>
<td>3.9 \pm 0.4 \times 10$^{−18}$</td>
<td>0.5 \pm 0.1 \times 10$^{−18}$</td>
<td>0.36 0.1 0.37</td>
</tr>
<tr>
<td>H$_2$ S(3)</td>
<td>1.958</td>
<td>1.0 \pm 1.2 \times 10$^{−17}$</td>
<td>8.7 \pm 0.1 \times 10$^{−18}$</td>
<td>0.96 0.93 1.02</td>
</tr>
<tr>
<td>H$_2$ Q(1)</td>
<td>2.407</td>
<td>2.0 \pm 0.1 \times 10$^{−17}$</td>
<td>2.3 \pm 0.8 \times 10$^{−17}$</td>
<td>1.84 0.27 0.7</td>
</tr>
<tr>
<td>H$_2$ Q(2)</td>
<td>2.413</td>
<td>5.3 \pm 0.3 \times 10$^{−18}$</td>
<td>7.9 \pm 0.2 \times 10$^{−18}$</td>
<td>0.49 0.23 0.37</td>
</tr>
<tr>
<td>H$_2$ Q(3)</td>
<td>2.424</td>
<td>3.1 \pm 0.1 \times 10$^{−17}$</td>
<td>2.7 \pm 0.8 \times 10$^{−17}$</td>
<td>0.27 0.70 0.71</td>
</tr>
<tr>
<td>H$_2$ Q(4)</td>
<td>2.438</td>
<td>1.3 \pm 0.1 \times 10$^{−17}$</td>
<td>2.7 \pm 0.3 \times 10$^{−17}$</td>
<td>1.2 0.21 0.16</td>
</tr>
<tr>
<td>H$_2$ Q(5)</td>
<td>2.455</td>
<td>1.2 \pm 0.1 \times 10$^{−17}$</td>
<td>5.2 \pm 0.5 \times 10$^{−18}$</td>
<td>1.11 0.59</td>
</tr>
</tbody>
</table>

Columns 5 and 6 list the observed flux for various transitions relative to the S (1) line, for two positions located a) on source and b) \sim1′′2 southwards along the slit. Columns 7 and 8 contain the line ratios expected, in the absence of any extinction for thermal excitation at 2000 K (Black & van Dishoeck 1987) and for a PDR model taken from Draine & Bertoldi (1996) for $n_H \sim 10^6$ cm$^{-3}$, $\chi = 10^5$ and $T_o = 1000$ K. Columns 9 and 10 are the data for the on source and \sim1′′2 southward slit positions, with an extinction correction applied as discussed in Sect. 4.1.1 Column 11 lists values from the C-shock modelling of Kaufman & Neufeld (1996) for a 15 km s$^{-1}$ shock propagating in a medium with a pre-shock density $n_{H_2} = 10^6.5$ cm$^{-3}$.

The line which at best detected at a low significance level, corresponds to a blend of the $^2\Pi_3/2, J = 7/2^+ − 5/2^−$ and $^2\Pi_1/2, J = 7/2^− − 5/2^+$ rotational lines at 84.42 and 84.59 μm respectively (see Fig. 4). The integrated flux contained in these two blended lines is 1.51 \times 10$^{−19}$ W cm$^{-2}$. Other OH lines within the ISO spectral bands are the $^2\Pi_1/2, J = 9/2 − 7/2$ transitions at 55.9 μm, the $^2\Pi_3/2, J = 5/2 − 3/2$ lines at 119.3 μm and the $^2\Pi_1/2, J = 3/2 − 1/2$ transitions at 163 μm, for which we set 3 σ upper limits of 3.1 \times 10$^{−20}$ W cm$^{-2}$, 2.9 \times 10$^{−20}$ W cm$^{-2}$ and 5.9 \times 10$^{−20}$ W cm$^{-2}$ respectively.

4.4. H$_2$O

Water emission has already been observed towards a number of molecular outflows with the ISO spectrometers (Liseau et al. 1996; Ceccarelli et al. 1999; Nisini et al. 1999). It is already well understood that the presence or absence of H$_2$O in a cloud, may be used to trace the shock activity of the gas (Bergin et al. 1998, 1999). We have been unable to identify any H$_2$O emission from IRS 5 (see Fig. 4), although we set a 2 σ upper limit on the 40.69 μm 4$_3^2$3$_{03}$ line of 3.62 \pm 1.55 \times 10$^{−15}$ W m$^{-2}$. This is the most intense water line seen in W Hya (Neufeld et al. 1996).

No lines were detected towards L1551 IRS 5 at 29.8, 31.8, 174.6, 179.5 and 180.5 μm, which correspond to strong lines that have been detected from other sources, to upper 2 σ upper limits of 21, 26, 4, 6 and 6 \times 10$^{−20}$ W cm$^{-2}$ respectively (uncorrected for extinction – see Fig. 18).

4.5. H$_2$

No emission lines were detected from any of the rotational lines of H$_2$ in the SWS spectrum towards IRS 5. A single detection of the $\nu = 1$−0 vibrationally excited $^2S (1)$ line at 2.122 μm has previously been reported by Carr et al. (1987), along with the Q-branch lines at 2.407, 2.414 and 2.424 μm, in a 3′′6 aperture.

Fig. 22. UKIRT archive spectrum towards L1551 IRS 5. This intensity at the (0,0) position is about three times weaker than the Carr et al. spectrum – but in reasonable agreement since the emission is extended relative to the UKIRT beam.

Their reported $S (1)$ flux of 2.8 \pm 0.3 \times 10$^{−17}$ W m$^{-2}$ lies below the SWS 2 σ sensitivity limit at slightly longer wavelengths (the SWS spectrum starts at 2.4 μm) of 5.6 \times 10$^{−16}$ W m$^{-2}$. In view of the low S/N of the Carr et al. (1987) data, we searched the UKIRT archive for a 2 μm spectrum to confirm the Carr et al. result. This spectrum is shown in Fig. 22.

The fluxes in the UKIRT observations are summarised in Table 7. From the upper limits to the $\nu = 0$−0 lines, it is possible to set limits on the beam averaged H$_2$ column densities using an ‘excitation diagram’. The extinction corrected intensity of an H$_2$ line $I (\nu', J')$ is related to the column density of the line, $N (\nu', J')$ by the relationship:

$$I (\nu', J') = \frac{hc}{4\pi} \nu A (\nu', J') N (\nu', J')$$
Fig. 23. Rotational temperature plot showing the $\nu = 0$–0 2 σ upper limits (solid, dashed and dotted lines) estimated from the SWS data, and the $\nu = 1$–0 detections (black circles with 2 σ error bars) from the UKIRT data. The SWS upper limits are shown for three cases, with no extinction, with the extinction inferred from our modelling as described in the text, and for illustration, halving the model extinction. We have presented the case that the 2 μm H_2 lines are due to scattered light – thus the column densities estimated from the H_2 2 μm lines given in Table 7 are plotted without any correction for extinction or scattering. A line representing a rotational temperature of 2500 K has been overlaid on the 2 μm lines, along with a 1 σ error bars. The H_2 column density determined from the vibrationally excited lines is 6 \pm1.1 10^{18} cm$^{-2}$. The vector in the lower left of the figure shows the expected slope of the data for rotational temperatures of 300 K – van den Ancker et al. (1999) have shown that H_2 rotational temperatures lie in a narrow range from 200–500 K for a wide range of UV illumination in PDRs, and in J-shocks, but can range up to \geq 1500 K in C-shocks. Most ground-based studies of the near-IR lines of H_2 have inferred rotational temperatures \sim 2000–3000 K.

where ν are the wave-numbers (Dabrowski 1984) and $A(\nu' J')$ are the transition probabilities for the various transitions, taken from Turner et al. (1977). The column densities are then compared with those predicted for a thermal distribution characterised by a rotational temperature T_{rot} since the rotational populations of a given vibrational level can be approximated by a thermal distribution:

$$N(\nu' J')/g_{J'} \propto \exp \left(-\frac{E(\nu' J')}{kT_{rot}} \right)$$

(7)

In this relationship the g terms are the degeneracies of the transitions, $g_{J} = (2J + 1)$ for even J (para-H_2) and $g_{J} = 3(2J + 1)$ for odd J (ortho-H_2), and the $E(\nu' J')$ terms represent the energy of the $(\nu' J')$ level. Thus the rotational temperature can be estimated from the inverse of the slope of a plot of $\ln(N(\nu' J')/g_{J'})$ against $E(\nu' J')/k$, correcting for an ortho/para ratio of 3:1.

It is clear from Fig. [23] that the $\nu = 0$–0 lines are far less affected by extinction than the $\nu = 1$–0 $S(1)$ lines. We can infer from the 2 σ upper limits that the extinction to the $\nu = 1$–0 $S(1)$ emitting gas must be $\lesssim 80^{m}$ – otherwise we should have detected emission in the $\nu = 0$–0 $S(6)$ or $S(7)$ lines, assuming that the rotational temperature is characteristic of many sources, $T_{rot} \sim 2000$ K. However, this limit is dominated by the S/N of the UKIRT spectra, and is not usefully stringent alone.

Shock models of the H_2 lines have been calculated by a number of workers. For J-shocks, 1D models have been presented by Brand et al. (1988), Hollenbach & McKee (1989), Burton et al. (1992), Neufeld & Hollenbach (1994), and for C-shocks, by Draine et al. (1983), Smith (1991), Kaufman & Neufeld (1996).

The ISOCAM CVF observations of Cabrit et al. (1999) made towards a number of molecular outflow sources show that the mid-IR H_2 lines dominate the cooling, and probe rotational temperatures in the range 300–2000 K. In the cases they studied, the observations were consistent with excitation in low-velocity C-shocks (10–30 km s$^{-1}$), based on the non-detection of J-shock tracers predicted to be present in the standard shock models of Hollenbach & McKee (1989), for shock velocities $\gtrsim 50$ km s$^{-1}$. From the L1551 IRS 5 data set, we set 2 σ upper limits of 2.5×10^{-15} W m$^{-2}$ and 3.8×10^{-15} W m$^{-2}$ on the Ne II $\lambda 6.64$ and Ne II $\lambda 12.81$ lines respectively.

To understand the excitation mechanism of the H_2, the $\nu = 2$–1 $S(1) \lambda 2.248$ to $\nu = 1$–0 $S(1) \lambda 2.122$ ratio has often been used as a diagnostic. This ratio has values typically ~ 0.1 in shocked regions and molecular outflows, and ~ 0.6 for pure fluorescence. However, Draine & Bertoldi (1996) show that in dense PDRs, thermal collisions can transfer the lower-level population ($\nu \leq 2$) towards LTE conditions, so that the line ratios approach those in shocked regions. Observational studies (Usuda et al. 1996; Takami et al. 1999) seem to confirm that this may indeed be the case. In one example, the case of the shocked region close to Orion KL, the ratio varies between ~ 0.1 and 0.2 over a wide range of $\nu = 1$–0 $S(1)$ intensity, whereas in a typical dense PDRs such as the Orion Bright Bar, and the reflection nebulae NGC 2023 and NGC 7023, the ratio varies between ~ 0.2 and 0.6, and shows a clear anti-correlation with the $\nu = 1$–0 $S(1)$ intensity. In L1551, the 2 σ upper limit on the $\nu = 2$–1 $S(1) \lambda 2.248$ line is 9.1×10^{-19} W m$^{-2}$, and the $\nu = 2$–1 $S(1) \lambda 2.248$ to $\nu = 1$–0 $S(1) \lambda 2.122$ ratio is < 0.11. Thus the ratio appears to be inconsistent with fluorescent excitation, even allowing for thermal collisions. This conclusion is consistent with the lack of an obvious ionising source in the centre of L1551. Although no firm conclusions can be reached on the basis of the line ratio data shown in Table 7, we can rule out (a) low density ($n_{H_2} \sim 10^4$ cm$^{-3}$) shock models and (b) that the H_2 emission is seen through more than two or three magnitudes of visual extinction (because the $(S(2)$ and $(S(3)$ lines, which suffer from the highest extinction, would become too bright relative to any of the models). It thus seems most likely that the $\nu = 1$–0 H_2 emission is seen in reflection.

4.6. CO vibrational bands

The CO absorption against IRS 5 has been previously studied by Carr et al. (1987) although the new UKIRT data presented here have higher sensitivity and spectral resolution. The data shown in Fig. [24] are fitted by a gas temperature of 2500 K, Doppler width of 5 km s$^{-1}$, and CO gas phase column density of 6×10^{20} cm$^{-2}$.

G.J. White et al.: An infrared study of the L1551 star formation region 759
4.7. CO rotational lines

It was not possible to detect rotational molecular CO line emission in any of the spectra. For the lowest-\(J\) transitions towards L1551 IRS 5, we set 2\(\sigma\) upper limits for the \(J=14–13\) and \(J=15–14\) lines of \(4.3 \times 10^{-17}\) W m\(^{-2}\) and \(1.37 \times 10^{-16}\) W m\(^{-2}\) for L1551 IRS 5 and HH 29 respectively. L1551 appears unlike many other outflow sources, which are rich in shock excited CO line emission.

4.8. OI

Towards L1551 IRS 5 the OI 63um flux is observed to be more intense than along the flow, which indicates that the emission is intrinsic and not due to the diffuse PDR. If the emission was due to the jet, then the mass loss rate is \(\sim 7.6 \times 10^{-7} M_\odot\) yr\(^{-1}\) (using the relationship from Hollenbach 1985), which is very similar to the \(\sim 10^{-6} M_\odot\) yr\(^{-1}\) derived from this source by other measurements. Along the flow it is likely that the OI emission comes from shocks in the outflows more than from diffuse PDR, since the OI lines are frequently brighter than the C I \(\lambda 157\) \(\mu\)m, particularly towards HH29, L1551 NE and on the b1,b2 and b3 positions, which are associated with peaks of C emission in the outflow map by Rainey et al. (1987) and Moriarty-Schieven & Snell (1988).

4.9. HH 29

A deep (2 hour) observation with the LWS was also made centred on the location of HH 29. The baseline subtracted (fitting a low order polynomial to the continuum level) spectrum is shown in Fig. 24, and is devoid of line emission, except for the O I \(\lambda 63.2\) and C II \(\lambda 157.7\) lines as listed in Table I.

4.10. L1551 NE

A red 6 \(L_\odot\) source has been reported lying close to IRS 5, which has become known as L1551 NE (Emerson et al. 1984). This source has been imaged by Draper et al. (1985) and Campbell et al. (1988). Moriarty-Schieven et al. (1995) first suggested that L1551 NE was the source of a second outflow close to IRS 5, and subsequent observations by Devine et al. (1999) indicated that L1551 NE may be responsible for driving the Herbig-Haro flow HH454. Observations of the continuum towards L1551 NE were also made, and are shown in Fig. 26. This spectrum shows little evidence of any line emission, other than reported in Table I.

4.11. Other locations along the outflow

Observations at a number of other locations along the molecular outflow, revealed no emission apart from weak C II and O I lines, and will not be further discussed here.
5. Conclusions

Observations have been made towards the two well known infrared sources L1551 IRS 5 and L1551 NE, and at a number of locations in the molecular outflow, using the LWS and SWS spectrometers on the ISO satellite, and several other near-IR telescopes. The present work possibly adds to the complexity by unveiling a plethora of unexpected phenomena, such as e.g. the occurence of significant extinction at mid and far infrared wavelengths and the existence of dense and hot regions (thermally stable?) over extended scales. The main results of this study are:

1. The ISO LWS spectrum consists of a relatively strong continuum, superposed with a few weak lines of O I, C II and possibly OH. Emission from other species such as CO or H2O was not detected. This might indicate that either the molecules have been destroyed, perhaps in a shock, or that the environment is unable to excite them to emit in the far and near infrared.

2. The ISO SWS spectrum of L1551 IRS 5 contains solid state absorption lines of CO, CO2, H2O, CH4 and CH3OH, which correspond to column densities of \(\gtrsim 7.7 \times 10^{18} \) cm\(^{-2} \), \(5.4 \times 10^{17} \) cm\(^{-2} \), \(7.6 \times 10^{16} \) cm\(^{-2} \) and \(2.6 \times 10^{18} \) cm\(^{-2} \) respectively.

3. Examination of archival HST NICMOS images reveals a diffuse conical shaped nebulosity, due to scattered light from the central object, with a jet emanating from L1551 IRS 5. It is likely that the emission in this jet-like feature is dominated by [Fe II] lines.

4. The continuum spectral energy distribution has been modelled using a 2D radiative transfer model. The continuum is well fitted for a central source luminosity of \(45 L_\odot \), surrounded by a flared disc with an opening angle of 90°. The outer parts of the torus extend to a distance of \(\sim 3 \times 10^4 \) AU, and has a total (gas + dust) mass of \(\sim 13 M_\odot \). The extinction towards the outflow is estimated to be \(A_v \approx 10 \) and the mid-plane optical depth to L1551 IRS 5 to be \(\sim 120 \). This model provides a good fit to the ISO data, as well as the available HST/NICMOS data, mid-IR maps, submm interferometry, and ground-based photometry with a range of different aperture sizes.

5. On the basis of the above model, an extinction curve has been estimated, which shows that the emission at wavelengths shorter than \(\sim 2 \) \(\mu \)m is due to scattered light from close to L1551 IRS 5, while at wavelengths \(\gtrsim 4 \) \(\mu \)m, is seen through the full extinguishing column towards the central source. This need to be taken careful account of when comparing line intensities at different wavelengths.

6. Three [Fe II] lines were detected in the SWS spectrum towards L1551 IRS 5, with a fourth line at \(\sim 1.5 \sigma \), and upper limits on several others. Although it would seem at first sight that shocks would be the most likely source of excitation in a known shocked region such as this, the line intensities do not fit the predictions of simple shock models. The problem with such shock interpretation of the [Fe II] lines is that the line ratios and strengths imply densities and temperatures which are outside the range considered by Hollenbach & McKee. However, as explained in 4.1.1 4.1.3, the overall energy budget and observed densities place stringent limits on possible shock models, leading us to explore other models. An alternative explanation has been examined where the [Fe II] gas is hot (\(\sim 4000 \) K) and dense (\(n_{H_2} \gtrsim 10^9 \) cm\(^{-3} \)). Although this provides an acceptable fit to the relative line intensities, it provides no constraints as to the precise heating mechanism of the gas – although it seems likely that it would have to occur very close to the root of the outflow. The lack of detection on Br \(\alpha \) \(\lambda 4.052 \) or Br \(\gamma \) \(\lambda 2.626 \), and the known low surface temperature (\(T_{eff} \sim 5500 \) K) of the central protostellar object argue against efficient excitation in a high UV field environment, making shocks the most likely way to explain the [Fe II] and [Si II] emission intensities.

7. The SWS observations did not detect any emission from rotationally excited H2. Observations with UKIRT of the vibrationally excited \(S \) and \(Q \)-branch lines were consistent with the gas having an excitation temperature of \(\sim 2500 \) K. Given the likely opacity to the central source which was predicted in our modelling, it is unlikely that we would have detected emission due to this hot gas component. Similarly, there was no evidence of lower temperature (\(\sim 500 \) K) gas, as has been inferred towards many other sources.

8. Observations with UKIRT of the CO absorption bands close to 2.4 \(\mu \)m are best fit with gas temperatures \(\sim 2500 \) K, and a column density \(\sim 6 \times 10^{20} \) cm\(^{-2} \).

9. Evidence for dense (coronal and higher densities) and hot (at least 2500 K up to perhaps 5000 K) gas is manifest in a multitude of observables; a) the overall SED, b) the CO bands, c) for a ‘normal’ [CO]/[H\(_2\)] = \(8 \times 10^{-5} \), the implied H\(_2\) column density \(N(H_2) = 6 \times 10^{20}/8 \times 10^{-5} = 8 \times 10^{24} \sim 2 \times 10^{25} \) cm\(^{-2} \) for gas at \(T \gtrsim 2500 \) K, d) the H\(_2\) emission (presence of rovibrational emission and absence of pure rotational lines) e) the [Fe II] spectrum, and f) that the SiII 35 micron is also consistent with this gas.

Although each of these individual pieces of evidence may have several interpretations, we argue that the combination of them all makes it highly likely that such a hot and dense gas phase is present. The problem as how to produce and to maintain this region (which has not previously been presented in the literature elsewhere) is beyond the scope of the present paper. Our simple modelling is based on steady state assumptions about processes which are most probably highly dynamic in nature. Any attempt to provide an explanation(s) would at the moment be based on pure speculation, and so we instead indicate the need for extensive theoretical work, which is beyond the scope of the present observational paper.

10. Observations at a number of other locations along the molecular outflow, and towards the Herbig-Haro object HH29, revealed no emission apart from weak C II and O I lines.

Acknowledgements. The Second Palomar Sky Survey (POSS II) was made by the California Institute of Technology with funds from the National Science Foundation, The National Geographic Society, The Sloan Foundation, The Samuel Oschin Foundation, and the Eastman...