The Open UniversitySkip to content

Reducing the effect of noise on chaos synchronization without capping

Hilliam, Rachel and Lawrance, Anthony (2002). Reducing the effect of noise on chaos synchronization without capping. In: International Symposium on Nonlinear Theory and its Applications, Oct 7-11, Xi'an, China.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (144kB)
Google Scholar: Look up in Google Scholar


Research in electronic communications has developed chaos based modelling to enable messages to be carried by chaotic spreading sequences. When such systems are used it is necessary to simultaneously know the resulting chaotic sequence at both the transmitting and receiving stations. This is possible using the idea of synchronization providing there is no noise present in the system. When noise is present in the transmission channel, recovery of the spreading sequence may be inaccurate or even impossible and the resulting sequence may no longer lie within the chaotic map range. A usual method of dealing with this problem is to cap iterations lying outside the range at their extremes, a procedure which increases the loss of synchronization. This paper discusses how synchronization can be improved by the transformation of the spreading sequence to be transmitted; the method uses knowledge of the invariant distribution of the chaotic spreading sequence, before noise corrupts it in the transmission channel. An ‘inverse’ transformation is applied at the receiver station with the result that the noise has a reduced impact on the synchronization and also on the subsequence recovery of the message.

Item Type: Conference or Workshop Item
Copyright Holders: 2002 Japan Society for the Promotion of Science (JSPS)
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Related URLs:
Item ID: 32584
Depositing User: Rachel Hilliam
Date Deposited: 17 Feb 2012 10:36
Last Modified: 11 Dec 2018 10:57
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU