
Social Sensing: When Users Become Monitors

Raian Ali, Carlos Solis,

Mazeiar Salehie, Inah Omoronyia
Lero - University of Limerick, Ireland

Bashar Nuseibeh
Lero- University of Limerick, Ireland

The Open University, UK

Walid Maalej
Technische Universtität

München, Germany

ABSTRACT

Adaptation requires a system to monitor its operational context to

ensure that when changes occur, a suitable adaptation action is

planned and taken at runtime. The ultimate goal of adaptation is

that users get their dynamic requirements met efficiently and

correctly. Context changes and users’ judgment of the role of the

system in meeting their requirements are drivers for adaptation. In

many cases, these drivers are hard to identify by designers at

design time and hard to monitor by the use of exclusively

technological means by the system at runtime. In this paper, we

propose Social Sensing as the activity performed by users who act

as monitors and provide information needed for adaptation at

runtime. Such information helps the system cope with technology

limitations and designers’ uncertainty. We discuss the motivation

and foundations of Social Sensing and outline a set of research

challenges to address in future work.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques
General Terms

Design, Human Factors, Management

Keywords

Requirements Engineering; Social Software Engineering; Models

at Runtime; Adaptive Software Engineering.

1. INTRODUCTION
Self-adaptive systems are increasingly expected to cope with the

volatile nature of the environment in which the system operates.

Different categories of environmental changes trigger different

categories of responses [1]. For example, security breaches and

attacks could trigger certain self-protection actions, or changes in

the available resources could trigger self-optimization actions.

The ultimate goal of this so-called self-* computing paradigm is

that users’ dynamic requirements are met efficiently and

effectively, and adaptation is done autonomously by the system so

that computing transparency is maximized and humans’

(designers and users) effort is minimized [2].

The adaptation loop [3] consists of monitoring changes in the

system operational environment, analysis of changes, planning an

action, executing it, monitoring back the effects, and so on.

Focusing on the monitoring stage, the system should monitor its

context, i.e. the state of the environment in which it operates [4].

Moreover, the system has to monitor if its executed actions were

performed successfully. Self-healing deals with incorrect

execution in a way that allows a system to handle faults and errors

autonomously. However, the technical correctness of system

execution (bug-free, no connection errors happens, etc.) does not

necessarily mean that users’ requirements are met [5]. For

example, sending an invitation to a meeting can be done via one

of two system alternatives: by SMS or email. A successful sending

of an invitation to a meeting via email does not necessarily mean

that the invitee was notified on time as the invitee might miss the

email or misinterpret it. That is, monitoring should primarily be

concerned with determining if users find the system execution a

valid and effective way for reaching their requirements, and

adaptation should respond to how users judge each system

execution against the meeting of their requirements.

Monitoring context changes and the quality of each system

alternative is not always achievable with the use of solely

technological means and might require users to collaborate with

the system. For example, in a driver-assistant system, the traffic

level in the area is a context attribute that affects to which park the

system should guide the driver. Such context might be un-

monitorable due to the lack of necessary infrastructure. As a

solution, the system could rely on the information obtainable

through the drivers’ community in that area. The system could

have different alternatives to interact with a driver while assisting

him (voice commands, maps, street view, etc.). For instance, a

quality attribute such as “readability” could be judged differently

in different contexts for each of these alternatives. However,

neither the designers at design time nor the system at runtime can

decide with certainty how the drivers judge “readability” for each

alternative. As a solution, drivers may be asked to provide such

quality judgments at runtime after an alternative is executed.

Besides monitoring the values of context attributes and quality

attributes, users could also be involved in identifying such

attributes. Users act as monitors to decide relevant context and

quality attributes to add to the design of the system and irrelevant

ones to remove from it as well. For example, drivers might add

“straightness of the road” as a context attribute which influences

the quality of each interaction alternative (voice command, map,

street view, etc.) against the quality attribute “readability”.

Moreover, drivers might add “minimum noise” as a relevant

quality attribute, which the designers did not consider when

designing the system, so that each system alternative is also

qualified against it. Thus, users are also monitors for identifying

drivers for adaptation, i.e. mainly context and quality attributes.

Maalej et al. [6] discuss how to make the user’s involvement a

first order concern in software projects, moving from a

transactional to a social engineering process. In line with this

view, the involvement of users can also be done at runtime as an

integral part of the system operation and not only the engineering

process. Ali et al [7] propose to weave together the variability of

context and the space of alternatives designed to reach the

requirements. However, context is presumed monitorable by the

system at runtime and the relation between context and

alternatives is specified under certainty. These two design

assumptions are hard to achieve in certain systems, which might

need humans to monitor context and its influence on the

activation, adoptability, and quality of each system alternative.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ESEC/FSE’11, September 5-9, 2010, Szeged, Hungary.

Copyright 2011 ACM 978-1-4503-0443-6/11/09…$10.00

In this paper, we propose Social Sensing as a system development

technique which involves users, at runtime, in the monitoring

activity of the adaptation loop. The goal is that limitations of

technological devices as well as uncertainty and incompleteness

of the system design are faced via the involvement of users’

perception as an integral part of the system monitor. Social

Sensing treats users as a primitive component of the system

instead of pure consumers of its functionalities. We discuss Social

Sensing foundations in Section 2, list research challenges in

Section 3, and conclude the paper in Section 4.

2. SOCIAL SENSING: FOUNDATIONS
Social Sensing is based on exploiting users’ perception as an

integral part of the computation. The system relies on the users’

community to get information which is un-monitorable by

automated means and/or unspecifiable under certainty by

designers at design time. The users play the monitor role and

provide input to the system so that the right decision and response

will be planned and enacted during the operation. This is

particularly important when dealing with systems involving a

community of users. For example, when volunteer drivers provide

context information, e.g. the traffic level in a specific area, other

drivers will benefit from it when the system executes for them.

The information provided by the volunteer drivers about the

quality of a system behavior, e.g., the comfort level of each

interaction technique for guiding a driver, is the main ingredient

for the collective judgment of the drivers’ community about each

alternative so the system can act accordingly.

We discuss Social Sensing in the context of adaptive systems. In

such systems, the context monitoring as well as the validity and

quality of system alternatives are essential to guide adaptation.

Moreover, we focus on the problem space rather than the solution

space taking the users’ satisfaction about the role of system in

meeting their requirements as the main goal of adaptation.

Social Sensing advocates that users can play a role in establishing

the monitoring process. Users understand the system as a means

to solve their problems and can collaborate with it as monitors

providing information using their own terms, which belong to the

problem domain (requirements, quality, context, validity, etc.) not

the technical solution domain (bug, error, protocol, proxy, etc.).

Thus, one of the ideal domains of Social Sensing is requirements-

driven adaptation. In the rest of this section, we discuss the meta-

model of this domain (represented in Figure 1) as a baseline for

our Social Sensing method.

Variability is the cornerstone for adaptation. A system provided

with only one alternative is unable to adapt when context changes.

A system alternative is a synthesis between automated and human

activities intended to reach certain requirements. In adaptive

systems, a requirement could be reached via different system

alternatives. For example, considering the driver-assistant system,

the system could have two main system alternatives “guide to a

public park” and “guide to a paid park”. The interaction with a

driver for guiding him to a suitable park can be also achieved via

different alternatives such as voice commands, an interactive map,

or a street view. Adaptation is seen as the selection of the system

alternative which best fits to the current context. The fitness of a

system alternative is measured via both its validity as a means to

reach the requirements and its quality degree as well.

Requirement
System

Alternative
Quality

Attribute

Validity
Context

Quality
Context

affects affects

satisfiability of via excellence of against

aims to meet qualified by

Figure 1 Meta-model of Requirements-driven Adaptation

Artifacts

The validity of a system alternative is a binary property referring

to its success/failure in reaching the requirement it is intended for.

For example, using the guidance of the driver-assistance via one

alternative, the driver either reaches (valid) or does not reach

(invalid) a free parking place. The quality of a system alternative

is captured via a number of quality attributes each representing a

distinguished characteristic of the degree of excellence of an

alternative. For example, the quality of each way of interacting

with a driver could be refined to “readability”, “fast”, or “less

distraction”. The assessment of a system alternative against a

quality attribute could fall into a designated scale (e.g. [very poor,

poor, acceptable, good, very good], or [low, medium, high]). The

validity and the quality of the operation of a system alternative in

the past are main factors to consider when adaptation is planned

so that the best alternative will be selected and applied.

The validity and the quality of a system alternative are context-

dependent. Context is represented via context attributes, each one

representing a distinguished characteristics of the environment in

which the system operates, e.g., driving speed, driver age, traffic

level, etc. Certain context attributes might influence the validity of

a system alternative and/or its quality against certain quality

attributes. For example, suppose the following context attributes

(Driver is in a hurry, The distance to the public park is far, Traffic

level is high) then most probably the system alternative “guide to

public park” is invalid. Certain context attributes might influence

the quality assessment of a system alternative against certain

quality attribute. For example, the level of driving experience, the

complexity of the road and the traffic level in the area are context

attributes which influence the assessment of each alternative of

communicating with a driver against a quality attribute like “less

distraction”.

Social Sensing plays a major role within the above settings and is

characterized by the following four distinct contributions:

1. Context values. Users play a role in obtaining values of

context attributes that affect the validity and quality of

system alternatives, which are not monitorable for reasons

such as limitations or failure of technology, lack of

infrastructure, etc. Using these values, a system can decide

applicable alternatives by analyzing the history of each

alternative in similar values of context in the past. As a

result, the alternative which best fits the current values of

context will be applied. For example, a context attribute like

“there is an accident in a certain area” may not be

monitorable by the driver-assistant system due to the lack of

access to the official traffic management system or because

no such system exists. Thus when volunteer drivers passing

close to the accident’s location provide such information,

the system will benefit from it for guiding other drivers.

2. Quality and validity assessment. Uncertainty is inherent

when designing a system. The validity of a system

alternative and its quality assessment against each quality

attribute is not always decidable under certainty by

designers at design time. In Social Sensing, the users play

the role of monitors of the validity and quality of each

system alternative. For example, whether guiding a driver

with medium driving experience via an interactive map is a

valid interaction method, is unknown unless the system

operates in practice and drivers themselves decide that.

Moreover, designers might not be able to decide the quality

of guiding a driver, who is familiar with the area, via voice

commands against the quality attribute “less distraction”.

Moreover, validity and quality are not static properties.

What is known to be a valid and high-quality alternative at

one point in time may lose these characteristics as time

passes. Social Sensing allows for a continuous evaluation of

the system alternatives by involving the users’ community.

For example, “voice recognition” might be judged as low

quality interaction alternative compared to a quality

attribute such as “ease of use” by drivers. In the future,

when the drivers become more familiar with this

technology, their judgment of its quality might be different.

Social Sensing allows for capturing changes in the users’

community judgment of the system alternatives so that

adaptation is up-to-date.

3. Context attributes identification. Uncertainty concerns

also the identification of the context attributes which affect

the validity and the quality of each system alternative.

Designers might be uncertain if their identification is correct

and complete. Social Sensing allows users to act as

designers while the system is operating, by dropping context

attributes that they judge to be irrelevant and adding others

which they believe to be relevant for the validity and the

quality of each system alternative. In Social Sensing, users

can engage with this process throughout the life of a system.

This is essential to cope with the fact that relevance itself is

not a static property and what is judged to be relevant at the

moment might become irrelevant in the future, and vice

versa. For example, unlike the designers’ specification, the

drivers’ community might identify “the existence of a staff

assistant” as a relevant context attribute that affects the

quality attribute “reliability” of the system alternative

“guide to paid parking”. However, this attribute may turn

out to be irrelevant when the drivers’ community becomes

more competent about the use of new technology and trusts

it more. Moreover, the designers might specify that “the

existence of traffic lights inside the park” is a context

attribute which affects all alternatives against the quality

attribute “less distraction”. On the other hand, this decision

might be seen as a wrong one by the drivers’ community

and they may decide collectively to drop this context

attribute and consider it irrelevant.

4. Quality attributes identification. Similarly to the above

discussion about context attributes, designers might miss

quality attributes which the users’ community finds

relevant. Also, designers might include quality attributes

that may be deemed irrelevant by the user community.

Social Sensing gives users a voice and allows them to be a

part of the decision making team. It allows them to

continuously play the role of monitor to decide relevant

quality attributes to add and irrelevant ones to drop when

appropriate. For example, “reduced pollution” might be

considered by the drivers’ community as a relevant quality

attribute when evaluating each system alternative so that the

system might choose park place that is not ideal in terms of

time and effort required to reach it but good for reducing the

pollution in the area. Thus, if the drivers’ community

decides that this attribute is relevant, it will be added to the

list of quality attributes defined initially by the designers.

Moreover, the users’ community might drop some attributes

from that list if they are found to be irrelevant. For example,

in a city where traffic is often low and the need to reduce

pollution is not critical, the drivers’ community might

collectively decide to drop the attribute “reduced pollution”.

Social Sensing allows users to express their opinion so the system

analyzes it and takes decisions which reflect the collective

intelligence of the users’ community. The information provided

by the users’ community at runtime is a main ingredient for

planning and enacting adaptation. On the one hand, it helps the

system to cope with the limitations of the technological means of

monitoring the environment and the uncertainty and

incompleteness in the designers’ decisions. On the other hand, it

allows the users to drive the adaptation and maximize its

correctness so that their requirements are reached in the best

available way when changes happen.

3. RESEARCH CHALLENGES
While Social Sensing is powerful for crowd-sourcing users and

enabling them to act as monitors, it brings several software

engineering challenges.

1. Users’ subjectivity. Social Sensing relies on the existence

of a certain degree of similarity in the perception of

different users. That is, Social Sensing requires that the

perception of users of the values and relevance of the

adaptation drivers (context and quality attributes, etc.) are

similar. However, this is not always the case and users

might perceive adaptation drivers subjectively. For example,

the value of a context like “traffic level” could be monitored

by one driver as “medium” and by another as “high”. The

same subjectivity could arise when assessing the system

alternatives against a quality attribute. Devising methods

and analysis mechanisms to normalize the different users’

perception is a challenging problem of Social Sensing.

2. Trust management. Social Sensing requires users to

provide information and thus implies dealing with

trustworthiness of information and users. The benefits of the

openness-to-the-crowd might be sacrificed if untrusted

users, who might intentionally or unintentionally cause

harm to the system or misuse it, are not detected and dealt

with. Moreover, users need to trust the system itself before

collaborating with it. Developing systems that adopt Social

Sensing and are able to inspire users’ trust is another socio-

technical challenge, and achieving such trust has to be

engineered as a first class requirement of the whole system.

3. Security and Privacy. Depending on the criticality and

sensitivity of monitored information, security goals such as

confidentiality, integrity, and availability might become

concerns in Social Sensing. For example, Social Sensing

might not be ideal for a driver-assistant system for an

ambulance that is typically assigned to critical missions,

unless information provided by the driver’s community in

the area is strictly verified and secured. Moreover, while

Social Sensing relies on crowd-sourcing a large number of

users, it also opens the door for malicious users to attack the

system. For example, some drivers might provide wrong

information that leads to less traffic in the areas where they

drive. Furthermore, it is notable that some of the security

requirements in Social Sensing could be in conflict with

other categories of requirements such as privacy ones. For

example, if a driver refuses to provide his location for

privacy reasons, the system might not be able to help him

avoid traffic, thereby making the main system service

practically unavailable.

4. Transparency. An important goal of adaptation is to

minimize humans’ (users and designers) effort and

maximize computers’ transparency. Social Sensing implies

the intervention of users as monitors and thus users are

required to provide input not necessarily used for their own

immediate benefit. This means that Social Sensing, if not

designed effectively, may provide adaptation capabilities for

one group of people while potentially violating adaptation

of another. For example, the evaluation of a system

alternative may be provided by a user after the operation

terminates, so that the system benefits in next operations

executed for benefit of different drivers. Devising

mechanisms to encourage users to act as monitors and feel

some gain by doing this task is therefore a research

challenge to address.

5. Volatility. The validity of information provided by users,

especially context changes, is volatile. Context may change

rapidly so that information, which was true when the users

provided it, might become false when the system starts to

plan and enact adaptation. Social Sensing design has either

to deal with this volatility or to avoid taking decisions based

on information having highly volatile validity. For example,

when the car needs to be refueled, the driver-assistant

activates the requirement “guide the driver to filling

station”. When the system receives information from other

drivers that there is a filling station close to the driver

location and starts to plan and execute adaptation (notifying

the driver, getting his confirmation, choosing the right

interaction method, etc.), the driver would have passed the

station. That is, the system has to deal with the liveness of

sensed information.

6. Implementation. There are major challenges regarding the

implementation of Social Sensing. These challenges include

the way to represent context and quality attributes and the

values and judgments provided by users, the way to capture

this information efficiently and independently from the

applications, the decision about what information to collect

exactly and how long this data should be stored, etc [6].

Moreover, involving users in dealing with large volume of

information might compromise the applicability of Social

Sensing. For example, the list of quality attributes provided

by the users’ community could increase to an extent where

users find it tedious to assess a system alternative against all

attributes included in it. This means that the system might

need iterative maintenance so that applicability is not

sacrificed. Ideally, the system has to help designers when

maintaining the system by pointing out loci where designers

need to fix errors or take some other altering actions.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed Social Sensing as a system

development technique in which users’ perception is part of the

system computation. We advocated that users are a powerful

source for information that drives adaptation. In Social Sensing,

users act as monitors, increasing the ability of the system and

designers for capturing the values and the relevance of certain

adaptation drivers. Out of these drivers, we discussed context,

quality and validity. Social Sensing implies a direct interaction

with users. Thus, users interact using their own terms, i.e. their

problem domain terms, and this explains the focus of our

discussion of Social Sensing from a requirements engineering

perspective.

Our future work includes developing a methodology (models,

development process, analysis techniques, and a software

framework for Social Sensing) for incorporating the role of users

in the design of requirements at runtime. Our ultimate goal is to

develop capabilities that make Social Sensing viable and useful

from two perspectives. First, the users’ interaction with the system

should be facilitated and the awareness of users about the

consequences and the benefits of their interaction should be

maximized. In other words, engineering the awareness of users

and facilitating and encouraging their collaboration with the

system represent the first main thread of research we plan to

conduct. Second, the system has to be provided with analysis

techniques to process the information gathered from its users’

community and make use of it at runtime. These include deciding

about the significance of information provided by users and

formulating the community’s collective judgment, autonomously

or with a minimum intervention of designers.

ACKNOWLEDGMENTS. This work has been partially

funded by the EU Commission through the FastFix project, and

by Science Foundation Ireland grant 10/CE/I1855. We also thank

Vinny Cahill, Siobhán Clarke and Gavin Doherty for the

discussions which enriched the idea presented in this paper.

5. REFERENCES
[1] Mazeiar Salehie, Ladan Tahvildari. Self-adaptive software:

landscape and research challenges. ACM Transactions on

Autonomic and Autonomic Systems, 4:2, pp. 1-42, 2009.

[2] Richard Murch. Autonomic computing. IBM Press, 2004.

[3] Robert Laddaga. Self-adaptive software. Tech. Rep. 98-12,

DARPA BAA. 1997.

[4] Anthony Finkelstein, Andrea Savigni. A framework for

requirements engineering for context-aware services. In

STRAW 2001.

[5] Raian Ali, Fabiano Dalpiaz, Paolo Giorgini, Vitor E. Silva

Souza. Requirements Evolution: From Assumptions to

Reality. In EMMSAD 2011.

[6] Walid Maalej, Hans-Jörg Happel, Asarnusch Rashid. When

Users Become Collaborators: Towards Continuous and

Context-Aware User Input. In OOPSLA 2009

[7] Raian Ali, Fabiano Dalpiaz, Paolo Giorgini. A goal-based

framework for contextual requirements modeling and

analysis. Requirements engineering, Springer, 2010, 15, 439-

458.

