The Open UniversitySkip to content
 

Survival of Deinococcus radiodurans against laboratory-simulated solar wind charged particle

Paulino-Lima , Ivan Gláucio; Janot-Pacheco, Eduardo; Galante, Douglas; Cockell, Charles; Olsson-Francis, Karen; Brucato, John Robert; Baratta, Giuseppe Antonio; Strazzulla, Giovanni; Merrigan, Tony; McCullough, Robert; Mason, Nigel and Lage, Claudia (2011). Survival of Deinococcus radiodurans against laboratory-simulated solar wind charged particle. Astrobiology, 11(9) pp. 875–882.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1089/ast.2011.0649
Google Scholar: Look up in Google Scholar

Abstract

In this experimental study, cells of the radiation-resistant bacterium Deinococcus radiodurans were exposed to several different sources of radiation chosen to replicate the charged particles found in the solar wind. Naked cells or cells mixed with dust grains (basalt or sandstone) differing in elemental composition were exposed to electrons, protons, and ions to determine the probability of cell survival after irradiation. Doses necessary to reduce the viability of cell population to 10% (LD(10)) were determined under different experimental conditions. The results of this study indicate that low-energy particle radiation (2-4 keV), typically present in the slow component of the solar wind, had no effect on dehydrated cells, even if exposed at fluences only reached in more than 1000 years at Sun-Earth distance (1 AU). Higher-energy ions (200 keV) found in solar flares would inactivate 90% of exposed cells after several events in less than 1 year at 1 AU. When mixed with dust grains, LD(10) increases about 10-fold. These results show that, compared to the highly deleterious effects of UV radiation, solar wind charged particles are relatively benign, and organisms protected under grains from UV radiation would also be protected from the charged particles considered in this study.

Item Type: Journal Article
Copyright Holders: 2011 Mary Ann Liebert
ISSN: 1531-1074
Academic Unit/Department: Science > Physical Sciences
Science > Environment, Earth and Ecosystems
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
eSTEeM
Item ID: 32201
Depositing User: Karen Olsson
Date Deposited: 03 Feb 2012 13:49
Last Modified: 05 Mar 2014 10:28
URI: http://oro.open.ac.uk/id/eprint/32201
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk