KC-Viz: a novel approach to visualizing and navigating ontologies

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© 2010 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
KC-Viz: A Novel Approach to Visualizing and Navigating Ontologies

Enrico Motta
Knowledge Media Institute
The Open University
Milton Keynes, UK
e.motta@open.ac.uk

Silvio Peroni
Dept. of Computer Science
University of Bologna
Bologna, Italy
speroni@cs.unibo.it

Ning Li
Knowledge Media Institute
The Open University
Milton Keynes, UK
n.li@open.ac.uk

Mathieu d’Aquin
Knowledge Media Institute
The Open University
Milton Keynes, UK
m.daquin@open.ac.uk

ABSTRACT
There is empirical evidence that the user interaction metaphors used in ontology engineering toolkits are largely inadequate and that novel interactive frameworks for human-ontology interaction are needed. Here we present a novel tool for visualizing and navigating ontologies, called KC-Viz, which exploits an innovative ontology summarization method to support a ‘middle-out ontology browsing’ approach, where it becomes possible to navigate ontologies starting from the most information-rich nodes (i.e., key concepts). This approach is similar to map-based visualization and navigation in Geographical Information Systems, where, e.g., major cities are displayed more prominently than others, depending on the current level of granularity.

1. INTRODUCTION
A key component of the Semantic Web is provided by the large number of ontologies available online. In particular, hundreds of ontologies containing thousands of classes have been made available online in the last few years. Given such large scale availability of ontologies, ontology reuse is becoming commonplace and indeed tools such as the Watson plug-in for the NeOn toolkit (http://neon-toolkit.org/) are now available, which facilitate the task of locating and directly reusing ontologies or ontology fragments. In this reuse-centric context, it is highly desirable to have mechanisms that can efficiently help users in making sense of the content of an ontology. However, the empirical studies carried out in the NeOn project [1] show that the visualization and navigation facilities available in today’s ontology engineering environments are not necessarily able to provide effective overviews of ontologies and often end up hindering rather than helping users. Our studies show that this is a problem especially for non-expert users.

To address this issue we have developed a novel tool for visualizing and navigating ontologies, called KC-Viz, which has been realized as a plugin for the NeOn Toolkit. KC-Viz exploits automatically created ontology summaries, based on the idea of key concepts [2], to facilitate the task of making sense of large ontologies. In this short paper, we give a brief description of some of the functionalities provided by KC-Viz.

2. KEY CONCEPT EXTRACTION
Informally, key concepts can be seen as the best descriptors of an ontology, i.e., information-rich concepts, which are most effective in summarizing what an ontology is about. In [2] we considered a number of criteria, and correspondingly developed a number of algorithms, to identify the key concepts in an ontology. In particular, we used the notion of natural category [3], to identify concepts that are information-rich in a psycho-linguistic sense. This notion is approximated by means of two operational measures: name simplicity, which favors concepts that are labeled with simple names, and basic level, which measures how ‘central’ a concept is in the taxonomy of an ontology. Two other criteria were drawn from the topology of an ontology: the notion of density highlights concepts which are information-rich in an ontological sense, i.e. they have been richly characterized with properties and taxonomic relationships, while the notion of coverage aims to ensure that no important part of the ontology is neglected. Finally, the notion of popularity, drawn from lexical statistics, is introduced as a criterion to identify concepts that are commonly used. The density and popularity criteria are both decomposed in two sub-criteria, global and local density, and global and local popularity respectively. While the global measures are normalized with respect to all the concepts in the ontology, the local ones consider the relative density or popularity of a concept with respect to its surrounding concepts. The aim here is to ensure that ‘locally significant’ concepts get a higher score, even though they may not rank too highly with respect to global measures. Each of these seven criteria produces a score for each concept in the ontology and the final score assigned to a concept is the weighted sum of the scores resulting from individual criteria. As described in [2], our algorithm has been shown to produce ontology summaries that correlate significantly with those produced by human experts.

3. OVERVIEW OF KC-VIZ
To illustrate KC-Viz, we use the Dolce ontology (http://www.loa-cnr.it/ontologies/DLP3971.zip) as an example. Dolce is an upper-level domain-independent ontology describing generic concepts which can be used to provide the foundational structure for more specific ontologies. Figure 1 shows an initial overview of the Dolce ontology, generated using the “Visualize Key Concepts” functionality in KC-Viz. The solid grey arrows in the figure indicate direct rdfs:subClassOf links, while the dotted green arrows indicate indirect rdfs:subClassOf links. As shown in the figure, by hovering the mouse over an indirect rdfs:subClassOf link, we can see the chain of rdfs:subClassOf relations, summarized by the indirect link.

In the example shown in Figure 1, we have elected to display a small quick overview of the ontology by setting the size of the
summary to 16, however this parameter is under user control, to allow him/her to decide the size of the initial summary. Another option available to the user is whether to display only classes local to a particular ontology, or to also include inherited ones. In particular, the Dolce ontology actually consists of a set of eleven different ontologies. Given the relative small size of the overall set of ontologies, we have produced a snapshot of the entire network of ontologies, rather than that of an individual ontology in the overall network.

Our approach is consistent with the middle-out approach to ontology engineering [4], which suggests that ontologies should be developed identifying basic concepts first, e.g., Event, then specializing them, e.g., GivingATalk, and then grouping them into more abstract categories, e.g., IntangibleThing.

Another important aspect of KC-Viz is that this abstraction mechanism can be used recursively to explore specific parts of an ontology. For example Figure 2 shows the menu that is opened up by i) right clicking on node edns:description and ii) selecting the option Expand. As shown in the figure a rich set of options is presented to the user, which make it possible to explore the subtree under edns:description using (or not using) key concepts, expanding up to a certain level, and possibly including also superclasses, domain, and range relations to other concepts in the resulting visualization. Analogously, in a situation in which the user does not need to investigate further the subtree under a class and wishes to remove it from the visualization, a Hide menu item is available, which opens up the window shown on the right hand side of Figure 2.

ACKNOWLEDGMENTS
This work was carried out in the context of the NeOn project, which was funded by the European Commission as part of the Information Society Technologies (IST) programme under grant number IST-FF6-027595.

REFERENCES